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I. Group Theory
1. Definitions

1.1. Group notation is multiplicative. The product of two subsets 4, B of a
group G is denoted A4 - B.

The abelianization of a group G is denoted G*® or H,(G). Let Z, denote the
additive cyclic group of order p; sometimes it will be considered the field of
order p. H(G:Z,)=G*"®Z,.

The conjugacy class of an element a in a group G is

a]®={beG]|there exists geG such that gag~' =h}.
g

The commutator [a,b]=aba " 'b~".

If A, B are subgroups of G, then [4, B] is the subgroup generated by all
commutators [a, b] for aeA, beB. If C is also a subgroup, C"[A,B] is the
subgroup generated by all elements of the form ¢"[a,b] for ae A, beB, ceC.

1.2. For A a normal subgroup of B, we write A<sB. A subgroup A4 of B is
subnormal in B if there is a finite chain of subgroups, each normal in the next,
connecting A to B:

A=C,<C,<a...<<(C,=B.

If X is a subset of a group G, then (X, denotes the normal closure of X in
G, the smallest normal subgroup of G containing X.

1.3. If AcB are groups, we say that A is normal-convex in B when for each
R< A, (R)yn A=R. Equivalently, for every subset X of 4,

(X)pnA= (XD,
or,
AKX >,— B/{X)p is injective.

* This work was partly supported by NSF Grant MCS 80-2858



2 J.R. Stallings

It is easy to show the following fact:
1.3.1. If A4 is a subgroup of both B and C, and there exists a homomorphism
¢: B— C extending the identity on A, and if 4 is normal-convex in C, then A4 is
normal-convex in B.
Two special cases of this are:
1.3.2. If A is a retract of B, then A4 is normal-convex in B.
1.3.3. If AcB<=C, and A is normal-convex in C, then 4 is normal-convex in
B.

Another easy fact is:
1.34. If AcBc C and A is normal-convex in B and B is normal-convex in C,
then A4 is normal-convex in C.

An example of a normal-convex subgroup of countable rank in a free
group of rank 2 is given in [2].
14. If o, B, ..., B,€G, we say o is dependent on (f3,,...,,) in G when

“e[/jl]G‘ [/32]6 Teees [ﬁn]G‘

That is to say, « is a product of n terms, the i’ one being of the form g,f,g;”"
for some g;eG.

1.5. If G is a group, a set of equations over G in {x,,...,x,} is a set
{wy=1,...,m =1}

where w,,...,w, are elements of the free product G * X, where X has free basis
5 I o %

We say the set of equations has a solution if there is a group H>G and
elements &,, ..., ¢,eH, such that, under the evaluation map

GxX->H

taking G— H by the inclusion and x;— ¢, the images of w,,...,w, are all =1.
This is the same as saying that the composition

CGoGxX->G* XKW, ...uW6.x
is injective.

If, as above, weG % X, then e (w) denotes the exponent sum of x; in w. That
is, retract G * X onto the cyclic group generated by x;, by sending G and all x;
for j#i to 1; the image of w is a power of x;, the exponent being e/(w).

A set of equations over G, {w,=1,...,w, =1}, is said to be non-singular
when the integer matrix [e(w;)] has rank k=the number of equations. In this
case, the number k of equations is equal to or less than the number n of un-
knowns. If k=n, we have a square set of equations, whose determinant det [¢;(w))]
is a non-zero integer if the set of equations is non-singular.

2. The p-adic Topology

2.1. Let p be a prime number. For any group G there is a central series which
descends fastest subject to the condition that the successive quotients are Z -
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vector-spaces. This is the p-central series {,G,}

]JG 1= G
pGn-+- 1 =(pGn)p [G’ pGn]

The p-derived series {,G,} is defined as the fastest descending normal series
whose successive quotients are Z -vector-spaces:
G,=G

pl1]

pG[n +11= (r’G[nJ)l7 [nGl"l’ nGl"l]'

We also denote the ™ term of the p-central series thus:

A fact easily proved is this:

oGO = pOpicsi—1)-

If, as will be common, a prime number is fixed (we shall not be concerned with
interactions of these ideas for different primes, in general), we omit the p from
the notation and say, for example:

Gn = G[n]
(G[k])[l] :G[k+l —1]

These series consist of functorial, and, in particular, fully invariant sub-
groups.
2.2, If G is finitely generated, it is easy to prove, inductively, that both G, and
Gy,; are of finite index in G, both indices being powers of p. It is well known
that if H is a finite p-group, there exists n such that H,={1}. Therefore, when
G is finitely generated, for any integer k, there is n such that (G/Gyy),=1{1}.

This is the same as G, < Gy,,.

2.3. The p-adic topology on a group G is the topology where a basis of
neighborhoods of 1 is the p-central series {G,}. By (2.2), if G is finitely
generated, the same topology is defined by the p-derived series.

The c'omplerionAof G in the p-adic topology is denoted FG or simply G. The
natural map G — G has kernel G,,. If G is finitely generated, then G is compact,
totally disconnected, metric.

Two classical theorems are:

2.4. (Magnus-lwasawa [4]). If F is a free group, then F, is trivial.

2.5. (Stallings [7]). If ¢: E—F is a homomorphism, E and F free groups, and
b H((E:Z,)— H,(F:Z,) is an isomorphism, then for all finite n, ¢ includes an
isomorphism

E/E,~FJF,

¢1 is injective, and the induced map on p-adic completions is an isomorphism
ExF.
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2.6 Lemma. Let G be finitely generated, N< G, G/N a finite p-group. Then for
all n there exists k such that G, N,.

Proof. There exists [ such that
(G/N),={1}, or G,=N.
By (2.2), there exists k such that

G < G[H-n— 1]
Then:
Gy G[1+n7 1]=(G[l])[n]

(G =Ny <N,

2.7 Theorem. Let G be finitely generated, N a subnormal subgroup of index a
power of p. Then:
N is an open subgroup of G in the p-adic topology.

N is an open subgroup of G. R
The natural map of right cosets G/N — G/N is bijective.

Proof. This all follows from (2.6) by induction on the length of the subnormal
series connecting N to G.

3. Conjugacy in a Free Group

In this section we prove Proposition 4.8 in Lyndon-Schupp [5], which is
attributed to Baumslag, Taylor, and Higman. We follow Lyndon and Schupp’s
proof, filling in the gaps; Lyndon-Schupp, in particular use the word “con-
jugate” loosely (instead of “conjugate in S”), and we think the confusion needs
cleaning up.

3.1. Let N<G, a,feG. We say that o and f are conjugate mod N in G, if the
images of « and f are comjugate in G/N. That is, there exist ueG, veN such
that

a=ufuv.

Recall that a prime p is fixed, {G,} is the p-central series of G, and G is the
p-adic completion of G. '

3.2 Lemma. Suppose that «, G, a finitely generated group. Then: o and p are
conjugate mod G, in G for all n, if and only if the images of « and B are
conjugate in G.

Proof. That conjugacy in G implies conjugacy modG, for all n is clear.
Conversely, if « and f8 are conjugate mod G, in G for all n, there exist u,eqG,
v,€G, such that a=u,fu,; 'v,. Since G is a compact metric space the image of
{u,} in G contains a convergence subsequence, converging to yeG; then «
=By,

3.3 Lemma. If N is a subnormal subgroup of a finitely generated group G, of
index a power of p, and aeN, and {x,, ..., X} is a set of representatives of the
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right cosets Ng, and BeG, and if « is conjugate to [ in G, then there is a
representative x; such that x,fx;'eN and « is conjugate to x;fx; " in N.

Proof. There is yeG such that a=7f7~'. By (2.7) we can identify G/N with
G/N, and so y=vx, for ve N and some x;. Then

a=v(xfx;Hv?

and x,fx;'eNnG=N.
3.4. We give some definitions concerning the well known matter of subgroups
of a free group ([5], page 103).

Let F be a free group with basis X, and Sc F a subgroup.

A Schreier transversal T of S in F relative to X is a set of representatives of
the right cosets Sg, satisfying the tree condition that whenever teT, then every
left segment of ¢ (written as an X-word) belongs to T.

The corresponding Schreier basis Y of S consists of those elements of the
form

t,xty', for xeX, t,,t,eT

which belong to S and are #+1 in F.
Given seS,

n
e &y )
s=[]xe, xeX, ==1,
1
there is a unique rewriting of s into a word in Y:

n
_ Er4—1
s=[]txpe)
1

with t, =t,,, =1, the t; chosen to make each term t;xot;,}, =% belong to S,
hence y,eY or y,=1.
The length of weF in terms of the basis X is denoted by |w|y.

3.5 Lemma. Let F be free with basis X, S a subgroup of F, T a Schreier
transversal of S, Y the corresponding Schreier basis of S. Then:

() If BeF, t,,t,eT, t,ft5 €S, then |t, ft; ']y S|Py

(i) If aeS, a=tw, teT, |wly <|aly, then |a|, <|aly.

Proof. In rewriting t, ft5 ' in terms of Y, all terms involving X-letters of ¢, and
t; ' yield trivial terms 1 because of the tree condition on T. Each letter of p
gives one term which may or may not be 1. This proves (i).

For (ii), taking t, =t, t,=1, f=w, part (i) says

locly S |wiy <lotly.

3.6 Theorem ([5]). Let F be a finitely generated free group, «, BeF. Suppose
that o and B are conjugate and mod F, in F for all n, where {F,} is the p-central
series of F. Then o and 8 are conjugate in F.
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Note. In the non-finitely generated case, the hypothesis that « and f are
conjugate in F mod every normal subgroup of finite index a power of p yields
the same conclusion. This is easily seen to be equivalent to this theorem.

Proof. The proof is a sort of “tower™ argument.
A situation Y =(S, X, o, B, u, v) consists of

S, a subnormal subgroup of F of index a power of p.
X, a free basis of S.

oy, By €S, such that o, and B, are conjugate in S.
u,veF, such that o, =uou="', B, =vfv~"

We define the complexity of X:

('(Z)=|a1|x+|ﬁllx-

There exist situations. For example, if X is a basis of F, then X =(F, X, a,
B. 1, 1) is a situation, because, by (3.2), « and f are conjugate in F. Therefore
there exists a situation X of minimal complexity, which will be chosen for the
rest of the argument.

First, ; and f; are cyclically reduced in terms of the basis X. Otherwise,
complexity could be decreased by conjugating them within S.

Second, «; must be a power of a single element of X. Otherwise, if both x
and y occur in «;, we can arrange a homomorphism ¢: S—Z, with ¢(a,)
trivial and ¢ non-trivial on x or y or both. Suppose ¢(x) non tr1v1al rotate «,,
changing u, so that x or x~' is the first letter of «,; if x !, change X to X ~';
this does not change ¢(Z). Thus, ; =xw and |w|, <|o,|,.

Let §'=ker ¢. Take {1,x,...,x"~'} as a Schreier transversal of S’ in S. Let
X' be the corresponding Schreler basis of S". By construction, «,€S’. By (3.3),
there is k, 0=k <p, such that o, and x*B,x *eS’ are conjugate in S' Then

Z=(8, X" o, x*By x ¥ u, xkv)

would be a situation, which, (by 3.5), would have less complexity than that of
z.

Similarly, 8, is a power of a single element of X.

Now, o, =x* B, =y, with x, yeX. We have «, conjugate to f, in S, and so
by (3.2), «; and B, are conjugate in Smod any normal subgroup of index a
power of p; and so, a; and f8, are equal in the abelian groups

S$*®Z, forallr.
This implies x=y, k=1, o, =f,. We then have
a=@wu 'v)fw 'v)"!, u,veF QED.

3.7. The Magnus-Iwasawa theorem (2.4), in the form, “a=1 in F implies a =1
in F”, follows from (3.6) by taking f=1.

An interesting corollary of the proof of (3.6) is this:
37.1. If Fis free, a€F, a#1, p a prime number, then there is a subnormal
subgroup ScF, of index a power of p, and a basis X of S, with aeS and xeX,
such that o =x* and k%0 mod p.
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3.7.2. And so, if o is not a proper power in a free group F, then for every
prime p, there is a subnormal subgroup S< F of index a power of p, such that
o is a primitive element (i.e., belongs to a basis) of S.

3.8 Restatment of (3.6). If F is a free group of finite rank, aeF, p a prime
number, then the conjugacy class [«]" is a closed set in the p-adic topology on
E.

Proof. 1f B¢[a]F, then (3.6) says there exists n such that fF,n[«]F =@, so that
f has a neighborhood BF, disjoint from [a]".

4. Group-Theoretic Conjectures
We state some group-theoretic conjectures, called A, B, B, C, D, E. The
diagram of implications is roughly

’

B E
N
B
7\
A D

\/

C

The conjecture (E) is the famous one on non-singular sets of equations in a
group. A special case of (A) has just been proved, as (3.8); hence a special case
of (B) is a fact, Theorem (5.3) below. The conjecture (B’) has an analogue in the
theory of 3-manifolds, which is proved later, as Theorem(9.1). Some of these
conjectures, e.g. (C), sound rather unlikely, but no counterexample is known.
The implications described in the above diagram will be proved in the next
section. Some of the conjectures have a parameter p, a prime number; and
some have a parameter n, a positive integer.

4.1 Conjecture A,(p) [Closure problem]. In a finitely generated free group F,
the product of n conjugacy classes is a closed set in the p-adic topology.

4.2 Conjecture B, (p) [Dependency problem]. If' S is a subgroup of a finitely
generated free group F and H\(S;Z,)— H,(F;Z,) is an isomorphism, then for all
o By, ..., B,.E€S, if a is dependent on (B,,...,B,) in F, then o is dependent on
(By,....B,) in S.

4.3. To state conjecture B’, we need a definition. Given f,, f,, ..., p,€G, we
say that

genusc(ﬁm LA ﬁn) é k

if there exist g,€G, i=0,...,n, and x;,y;€G, j=1,...,k, such that

k

l_—logiﬁigf b ﬂ [xjv )’j]-

=1
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4.4 Conjecture B,(p) [Genus problem]. If S is a subgroup of a finitely generat-
ed free group F and H\(S:Z,)—>H,(F:Z,) is an isomorphism, then, Sfor all
Bos -, B,ES,

if genusg(fy, ..., )<k

then genusg(f,, ..., B,)<k.

4.5 Conjecture C(p) [Normal-convexity in p-adic completion]. If F is a finitely
generated free group, then F is normal-convex in its p-adic completion F.

4.6 Conjecture D(p) [Normal-convexity of p-isomorphisms]. If S is a subgroup
of a finitely generated free group F and H(S:Z,))—H\(F;Z,) is an isomorphism,
then S is normal-convex in F.

4.7 Conjecture E(p) [Solvability of non-singular sets of equations]. If G is any
group, and {w,=1,...,w,=1} is a square set of equations (i.e., weGx X, X free
on {x,,...,x,}) whose determinant, det[e(w))], is not divisible by the prime p,
then the set of equations has a solution (i.e., G—»G*X/(wl,...,wk>G*X is in-
Jective).

The history of this problem began with the theorem of Gerstenhaber-
Rothaus [1] who proved conjecture E (for all primes p) in case G is locally
residually finite. Howie [3] proved it for the case that G is locally indicible. A
simple consequence of E (for any one prime p) is the conjecture that a group of
the form G+ Z cannot be killed by adding a single relation unless G is trivial:
this conjecture has been credited to various people; the oldest reference I can
find, [6, p. 403], credits it to Kervaire.

4.8 Let us describe conjectures B,(0), B(0), D,(0), as those obtained from B,(p),
etc., by replacing the assumption

“H(S:Z,)—>H\(F;Z,) is an isomorphism”
by
“H\(S;Q) - H\(F;Q) isan isomorphism”

where Q is the additive group of rational numbers.
It is easy to see, since F is assumed to be finitely generated, that we have
these implications:

(x) 1f B,(p) is true for infinitely many primes p,
then B,(0) is true.

And similarly for B,, D,. This happens because H\(S:Q)—H,(F;Q) is an
isomorphism if and only if Hl(S;Z,,)—>H1(F;Zp) is an isomorphism for all but
a finite number of primes p.

There is also a conjecture E(0), in which the condition that the determinant
is not divisible by p is replaced by the condition that the determinant is non-
zero. An implication similar to (x) holds relating E(p) and E(0).

49 We can apparently strengthen conjectures B,(p), B(p), and D,(p) by relax-
ing the homology isomorphism condition to the condition

“H,(S:Z,)~H,(F:Z,) is injective.
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However, from this condition we can find a free group Tand a map T—F such
that S * T—F induces homology isomorphisms mod p. The original conjectures
now assert something about S= T in F; (by (2.5) S* T is a subgroup of F); the
corresponding assertion about S in F will follow by retracting S * T onto S.

In the case of conjecture E the similar phenomenon is this: Replace the
assumption that we have a square set of equations with determinant non-zero
mod p, by hypothesizing a set of equations, such that the rank of the matrix
[ei(w;)] reduced modp is equal to the number of equations. This apparently
stronger conjecture (i.e., less likely to be true) follows from the original one, by
adding extra equations to fill out a square set. To solve the larger set of
equations yields, a fortiori, a solution of the smaller set.

4.10. In other words, at the expense of making the comments (4.8) and (4.9), we
can dispense with making the more grandiose-sounding versions of the conjec-
tures B, B', D, and E, involving characteristic zero and/or injectivity instead of
isomorphism. The grandiose versions are related to the conjectures as stated by
easy arguments.

4.11. Here are some specific questions. Let F have basis {x, y}, and S be the
subgroup generated by {x, yxyx~'y~'}.

Question 1. Suppose a, fe F such that [«, f]€S. Are there a, beS such that [a, b]
=[x, #]? (This would follow from Bj.)

Question 2. Suppose a, beS, y,6€F, and yadbd~ 'y~ 1eS. Are there ¢,deS such
that cadbd~'c¢~'=yadbd~"'7y~'? (This would follow from B,.)

A positive answer to either question might shed some light on the situation.

4.12. 1 feel that a proof of conjecture B might involve a construction, perhaps
a tower such as used in the proof of (3.6), which would leap out of the genus
zero situation, and therefore conjecture B’ might be the one that should be
attempted.

5. Implications

5.1. B,(p) implies B,(p).

Proof. Given Sc F satisfying the mod p homology isomorphism and o, f,, ...,
B.€S, with « dependent on (f,,....,8,) in F, define B,=a"'. Then
genusy(f,, ..., f,)=<0. By B/(p) we then get genuss(f,.,...,,)<0, which trans-
lates to say that o is dependent on (8,,...,f,) in S.

5.2. A,(p) implies B,(p).
Proof. Suppose ScF satisfies the condition that H,(S;Z,)—H,(F:Z,) is an
isomorphism. By (2.5), for each finite k,

S/S,~F/F,.

Now, if «,f8,, ..., 8,€S and « is dependent on (B, ..., ,) in F, then the image of
x is dependent on the images of (B,,...,8,) in F/F,~S/S,. That is, for all k we
can say

xS, (8P [8,1° ... (B D)+ 2.
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That is, a is in the p-adic closure of

[A T o (B

and this is a closed subset of § if A,(p) is true. Thus o would be dependent on

(B,, ..., B,) in S.

5.3 Theorem. If ScF, where F is a finitely generated free group, and S*®— F2®
is injective, then the induced map from conjugacy classes in S to conjugacy
classes in F is injective.

Proof. There exists a prime p such that H\(S:Z,)—> H\(F;Z)) is injective. We
can find a free group T and a map T— F, such that

H(S*T;Z,)—H,(F;Z,) is an isomorphism.

By (2.5), we can think of S * T as a subgroup of F. By (3.8) A,(p) is true, and so
by (5.2), By(p) is true. In the case at hand, B,(p) says that two elements o, f§ of
S<S =T, which are conjugate in F, are conjugate in S T. On retracting S* T
to S, we see that « and f are conjugate in S. QED.

5.4. If, for all n A,(p) is true, then C(p) is true.

Proof. Let F be a finitely generated free group and F its p-adic completion. Let
R<F and ae{R)znF. Then there are f8,,..., ,€R and y,,...,7,€F such that

n

O(=I_I B =

1

For any k, there are y, ,€F such that 7, , =y, mod . (Cf. (2.7).)
Then

n
4= Vi.Bivii
1
has the property:
o, =amod F,.

Hence o, is a sequence of elements of [$,]"-... - [B,]" converging to «. If A,(p)
is true, this product of conjugacy classes is closed, and so

ae[f,JF-...-[B) =R QED.
5.5. If, for all n B,(p) is true, then D(p) is true.

Proof. Suppose ScF induces an isomorphism on homology modp. Let R<S
and ae{R)rnS. Then there are f,,...,B,€R such that o is dependent on
(By,---,B,) in F. If B,(p) is true, then « is dependent on (By-.-,B,) in S and
hence aeR.

5.6. C(p) implies D(p).

Proof. Suppose S F induces an isomorphism on homology mod p. By (2.5) the
inclusion induces an isomorphism on p-adic completions

S~F.
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If C(p) is true, then S is normal-convex in § and hence, by the above isomor-
phism, S is normal-convex in F. Now, if R<1§, then

(RYrN"Sc{(R)nS=R,

the equality by normal-convexity in F. Therefore S is normal-convex in F.
5.7. D(p) implies E(p).

Proof. If there were a counterexample to E(p), we could find a finitely generat-
ed counterexample. Thus, we can suppose G=®&/R, where R<¢® and @ is a

finitely generated free group. Let X be free on {x,,...,x,} and let
Wy, ..., W, €G x X such that det[e(w;)] %0 mod p.

Let Ww,,...,w,e®*X be such that their images under ®—G are
Wy, ..., w, and such that e,(W;))=¢;,(w)). Let W be the free group with basis
Wy, ..., W ), and map Wto @ * X viaw;—Ww;. Then the evaluation map

PxW-oPx X

yields an isomorphism on homology mod p. By (2.5) this map is injective, so
that we can suppose @ * W is a subgroup of @ x X, with w,=w,.

Now, if D(p) is true, then @ * W is normal-convex in @ % X. Therefore, on
factoring out by the normal closures of RuU W, we get an injective homomor-
phism, which is exactly

GoG*x XKWy, .oo,we.

5.8. E(p) implies D(p).

Proof. Let ScF induce a homology isomorphism mod p, where F is free of
rank k. It follows that S has rank k. Suppose {s,,...,s,} is a basis of § and
{x{,...,x,} a basis of F. If e(w) is the exponent-sum of x; in w, then
det[e;(s;})]%0 mod p.

Let R<S and let G=5/R. Let g; be the image in G of s5;. To compute
F/{R); we can take the free product of G and F and identify ¢,€G with s;eF.
That is, let w;=0;'s; in G * F; then

GxFKwy,...,w )X F/{R).
If E(p) is true, then, since e w;)=e(s;), E(p) applies to this case, and
GoG*xF/Kwy,...,w»
is injective. This is just
S/R— F/<{R);

which is therefore injective.

Since R was an arbitrary normal subgroup of S, this shows S is normal-
convex in F.
5.9. Note that (5.8) and (5.7) imply that the non-singular equation conjecture is
equivalent to the conjecture that a particularly simple kind of equation-set can
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be solved. That is, all we have to do is to solve the equations of this form: {s
=o0,} for s;,eX and 0;€G, where det[e; [s;11#0mod p.

j

I1. Three-Manifolds

6. Definitions

6.1. We investigate 3-manifolds and surfaces in the polyhedral situation. Every-
thing is implicitly supposed to be tame. “Manifold” means manifold with
possibility empty boundary. Compactness and connectedness are assumed only
if this is made explicit.

The boundary of a manifold M is denoted BAM. For M to be oriented
means that each component of M is oriented; if M is oriented, then BAM is
oriented.

If A= B is a pair of 3-manifolds, we say that 4 is a proper submanifold if A
is a closed subset of B and the frontier of 4 in B is bicollared and equal to the
boundary of A. The closure of X in some understood ambient space is denoted
X.

6.2. Select a prime number p.

For p+2, p-oriented means oriented, while 2-oriented means nothing. For
M to be a p-oriented n-manifold means, then, that the sheaf of local homology
groups H,(M, M —{x}:Z ) over the interior of M has a nowhere zero specified
continuous cross-section.

Abbreviate the notation by writing H,(X) for H,(X;Z)), and similarly for
cohomology.

B.X) is the rank of H,(X) over Z,. y(X)=Y (—1)"B,(X). These are the
Betti numbers and Euler characteristic. By the universal coefficient theorem,
B.(X) is the rank of H"(X). Lefschetz duality says that if M is a compact p-
oriented n-manifold, then B (M)=p, (M,BdM). If M is a compact, p-oriented
n-manifold, whose boundary is partitioned into disjoint compact parts A and
B, another version of Lefschetz duality says B (M, A)=p, (M, B).

6.3. If T is a compact 2-manifold, we define genus T by the formula:
x(T)+ Bo(BAT)=2(B,(T)—genus T).

If T is connected and oriented, genus T is the usual thing, the maximum
number of pairwise disjoint simple closed curves in the interior of T whose
complement is connected. If T is connected, non-orientable, then genus T is
one-half the usual definition. In the general case, genus T is the sum of the
genera of the components of T.

A compact surface of genus 0, for instance, is a finite union of components
which may be spheres, disks, and disks with various numbers of holes.

7. Elementary Facts About 3-Manifolds

A prime number p remains selected.
7.1. If A is a compact p-orientable 3-manifold, then x(BdA)=2y(A).
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Proof. Lefschetz duality implies that y(4,BdA)= —y(A). The exact homology
sequence of (4, Bd A) implies that y(BdA)=y(A4)— (A, Bd A4).

7.2. If A is a compact connected p-orientable 3-manifold, then f,(Bd A)< f8,(A)
+1.

Proof. The exact cohomology sequence
H°(4)— H°(BdA)— H'(4,Bd A)

implies f,(Bd A)<f,(4)+f,(4,Bd A) and Lefschetz duality says f,(4,BdA)
=f,(A). Finally, f,(A)=1 since 4 is connected.

7.3. If A is a compact, p-orientable 3-manifold, then genus Bd A< f,(A).

Proof. The general case follows, as a sum of inequalities, from the case that A
is connected. It is clear when Bd A=@. When A4 is connected and BdA+ &,
then f,(A)=0, and (7.1) says

2(By(BdA)—genus Bd A)=2(1 —f,(A4)+ B,(A4))
and the inequality (7.2) finishes the proof.

7.4 Lemma. Let A be a compact connected p-orientable 3-manifold. Let EcBd A

be a compact surface, and define D=BdA—E. If H,(A,E)=0, then
genus E<genus D.

Proof. Let A" be A with 2-handles attached along Bd E=BdD. Let E’ and D’ be
E and D with 2-cells attached along each boundary component. Then genus D
=genus D', genus E=genus E’, and Bd 4 is the disjoint union of D’ and E'.

By excision, H,(A, E)~ H,(A, Eu2-handles), and by the homotopy axiom,
H,(A,E')x Hy(A, Eu2-handles). By Lefschetz duality, fS,(A’,D')=p,(4",E’)
which was just shown to be 0. The exact homology sequence of (4’,D’) then
implies

Bi(A) = By(D").
By (7.3),

genus E'4genus D' < f3,(A4").
These two inequalities, and the fact that

p,(D)=2genus D’
imply that
genus E'< genus D".

Note. The genus of the boundary of 4’ is an integer, and so genus D —genus E
is an integer. This comment may be useful, but only for p=2.

7.5 Major Lemma. Let A be a p-orientable, connected (not necessarily compact)
3-manifold, such that H,(A, BdA4;Z,)=0. Let D be a compact, connected, p-
orientable surface in A such that BAD=D nBd A.

Then D separates A into two components whose closures A, and A, are 3-

manifolds. At least one of these, say A,, is compact. Let E=Bd A, —D ; then, as
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p-oriented 1-manifolds, BAE=BdD;; and E is a compact surface contained in
Bd A, and genus E <genus D.

Proof. The number of components of A—D is at most two since 4 and D are
connected and D separates its tubular neighborhood in A into at most two
components.

The orientation class & of D represents a 2-cycle in (A4,Bd A), and so, since
H,(4,BdA4)=0, is the boundary of a 3-chain « of (A,Bd A). The restriction of o
to the orientation sheaf of 4 changes by one on going through D and is
constant on each component of 4—D; hence A—D is not connected and so
has two components.

Now « is a finite chain; so either 4 is compact, or o is zero on one
component of 4—D and non-zero on the other component, whose closure A,
is compact. If 4, is the compact closure of a component of A —D, clearly 4, is
a compact 3-manifold, and 4, "\BdA=BdA, —D =E is a compact surface, and
DcBdA,.

The exact homology sequence of the triple (4, A4, UBd A, BdA) contains

H(4,BdA)— Hy(A, A, UBdA)— H,(A, UBd A, Bd A) - H,(A4,Bd A).

The right-most group, H,(4,Bd A)=0 by hypothesis.

The left-most map, H;(4,BdA)— H4(4, A, UBdA), is an isomorphism. Ei-
ther both are zero when A4 is non-compact, or both are Z, since A and 4,
=the closure of the other component of A —D, are connected; in the latter,
compact case, we check that it is an isomorphism by restricting to a local
homology group at a point in the interior of A4,.

We conclude that H,(4, uBdA,BdA)=0. Hence, by excision, H,(A,,E)=0.
Now apply (7.4) to 4, to conclude that genus E < genus D.

8. Graphs of Surfaces

Let T be a compact p-oriented surface. Let €=(C,,...,C,) be a finite col-
lection of pairwise-disjoint, two-sided simple closed curves in the interior of T.
Let N(€) be a tubular neighborhood of UC€ in T. Let P=(D,,...,D,) be the
collection of components of T— N(C).

Define a graph (a finite 1-complex) I'(T,€). The vertices are the elements of
*B; the edges are the elements of €. An edge C, connects the vertices which
have the two curves parallel to C, on Bd N(€) in their boundaries. This may be
explained by a picture:
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k
8.1. Genus T = ) genusD,+ f,(I'(T. €)).
i=1
Proof. By adding 2-cells to Bd T we do not change the graph, genus T, the
genera of the D;. So we can suppose that Bd T =¢.
k

Now, Bo(T)=PB([(T,€)), and x(T)=) x(D,), since T is obtained by gluing
1
the components D; along curves C; having z(C;)=0.
If k is the number of vertices, n the number of edges, then
1(M(TE) = Bo(IN(T.€) = B (I(T,€)) =k —n.
k

Furthermore, each curve C; is counted exactly twice in Y Bo(BdD,), so that
1

k
2n=) Bo(BdD).
1
Then compute

genus T=f,(T)—5x(T)

=

=Bo(T) =32 1(D))

=PBo(T) =32 [2—2genus D;— f(BdD))]

M= =~ =

k
=B(T)—% [21\'—2 ) genus D,.—Zn]
1
k
=Bo(I(T,€))—k+n+) genus D,
1
k
=p,(I(T.€))+ ) genus D,.
1

82. Let ¢: I''>T be a map of finite graphs which is bijective on edges. Then
B S By(T).

Proof. A forest is a graph containing no simple circuit. In I', let F be a
maximal forest. It is easy to see that ¢~ '(F) is a forest, which can be enlarged
to a maximal forest F' in I"". Now, f,(I') is the number of edges of I' —F, and
B.(I'") is the number of edges I'"—F’. So f,(I'")< f3,(I).
8.3. An elementary simplification of (T, €) means this: Select a vertex D;: replace
it abstractly by a not necessarily connected, compact, p-oriented surface E
having Bd E=Bd D,, and genus E <genus D,.

This changes T to T'=(T—D,)UE, on which exactly the same system of
curves € exists. The single vertex D, of the graph has been replaced by possibly
several vertices, the components of E. In this situation there is a map of graphs

nr,©)-r(re)

which is bijective on edges.



16 J.R. Stallings

8.4 Lemma. If (T,€) is changed by an elementary simplification (replacing D, by
E with genus E <genus D,) to get (T',€), then

genus T'<genus T.

Proof. This follows from a computation using (8.1) and (8.2).

9. The Main Theorem

9.1 Theorem. Let p be a prime number. Suppose B< A is a pair of p-oriented 3-
manifolds with B a proper submanifold of A. Suppose

H,(A,B:Z,)=0.

Let T be a compact p-oriented surface contained in A, with Bd T < the interior of
B.

Then there is a compact p-oriented surface S<=B, with BdS=Bd T as a p-
oriented 1-manifold, and

genus S <genus T.

Proof. We can assume that T meets Bd B transversely. Thus TnBd B is a finite
collection €=(C,, ..., C,) of two-sided, pairwise-disjoint simple closed curves.
Let {D,,....D,} be the closures of the components of T—B; this is a subset of
the set of vertices of the graph I'(T,€). The proof is by induction on [; for [=0
we take S=T.

We can remove any of the boundary of 4 not in B after first pushing T
away from it. Let 4" be the closure of a component of 4 —B: then Bd A’
=A'nB=A'nBdB. Using excision, we conclude from H,(A,B)=0 that
H,(A',BdA")=0. If D;cA, we can apply (7.5) to conclude that there is a
compact 3-manifold 4;= A’, whose boundary is D,UE,, with E,;=A4,nBd A" If
there is a D; that intersects A,, then D;=A; and we can arrange for A;=A;. So,
there is an innermost D, say D,. Then there is a compact, connected 3-
manifold A4, that is contained in 4—B; BdA,=D, UE,, E,=A,nB, and
A; nT=D,. Furthermore, (7.5) says that

genus E, <genusD,.

Now, do an elementary simplification on (7,€) by replacing D, by E,,
getting (T",€). We have, by using the innermost argument, arranged it so that
T" is in fact embedded in A. By (8.4), genus T" < genus T. By a slight push in the
neighborhood of E, in the direction of the interior of B, we make T’ transverse
to Bd B. The components of T'— B will consist of {D,. ...,D,}. This finishes the
inductive step.

9.2. If A is compact and orientable, we have implications

H,(A,B;Z,))=0= H,(A,B:Z)=0
= there exists p such that H,(A,B:Z,)=0.
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Hence, the “p” in the theorem is a bit of a red herring, but it proves useful to
carry it along consistently in the proof.

The “proper” hypothesis is essential. The proof makes an essential use of
BdB. One cannot merely assume B is an open subset of A; two counterex-
amples come to mind in A=R3; B could be Whitehead’s contractible
manifold, or the non-simply-connected component of the complement of
Alexander’s horned sphere; in both cases, there are curves in B that bound
disks in 4 but not in B.

The conditions that T and S are embedded, not just mapped into A4, are
essential in the proof, but I do not know if a theorem about, for example,
immersed surfaces is true or false. If 4 and B were handlebodies, thus having
free fundamental group, then (9.1) in that case, for immersed surfaces, would
say exactly that conjecture B/(p), the genus conjecture, is true for all n.

I do not know yet of a good use for (9.1) other than to suggest that the
group-theoretic conjectures [ propose might be true.
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Added in Proof

The original assertion of Theorem 3.6 is a remark attributed to G.Higman on page 278 in G.
Baumslag, Residual nilpotence and relations in free groups, J. Algebra 2, 271-282 (1965).
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