

Werk

Titel: § 6. Deformations of Kähler Spaces.

Jahr: 1983

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0182|log59

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

J. Bingener

is injective. The assertion now follows by a simple diagram chase, taking into account that δ is surjective.

A weak Kähler metric for f (or for X relative S) is by definition a weak Kähler metric for $X \times_S S_{\text{real}}$ relative S_{real} . If such a metric exists, f is called weakly Kähler. Obviously any Kähler map is weakly Kähler. (5.8) implies a converse for some cases:

(5.9) **Corollary.** Let the assumptions and notations be as in (5.8). If there exists a real analytic weak Kähler metric for f which is horizontal, i.e. is in $\Gamma(X, \mathcal{X}_{X/S})^{\nabla}$, then f is Kähler.

§ 6. Deformations of Kähler Spaces

In this section we first give a criterion for a local deformation of a compact Kähler space to be Kähler.

- (6.1) **Theorem.** Let $f: X \to S$ be a proper holomorphic map, $s \in S$ a point and X_n the n-th infinitesimal neighborhood of X_s in X. Then the following conditions are equivalent:
 - (1) f is Kähler in s.
 - (2) The complex spaces X_n are Kähler for all n.

Proof. Clearly (2) is a consequence of (1). Suppose conversely that (2) holds. By (4.12) (1) the images of the maps $\Gamma(X_m, \mathscr{K}_{X_m}) \to \Gamma(X_n, \mathscr{K}_{X_n})$, $m \ge n$, are constant for $m \gg n$, say equal to $M_n \subseteq \Gamma(X_n, \mathscr{K}_{X_n})$. Obviously the homomorphisms $M_{n+1} \to M_n$ are surjective, and we have $\varprojlim M_n = \varprojlim \Gamma(X_n, \mathscr{K}_{X_n})$. Moreover $f_*(\mathscr{K}_X)_s \to M_n$ is surjective for all n by (4.13). For a given n we can find an integer $m \ge n$ such that the image of $\Gamma(X_m, \mathscr{K}_{X_m}) \to \Gamma(X_n, \mathscr{K}_{X_n})$ is M_n . By assumption, there exists a Kähler metric ϕ_m on X_m . Then the image ϕ_n of ϕ_m in $\Gamma(X_n, \mathscr{K}_{X_n})$ is a Kähler metric on X_n lying in M_n . After shrinking S as a neighborhood of S if necessary, there is an element ϕ from $\Gamma(X, \mathscr{K}_X)$ such that $\phi \mid X_n = \phi_n$. Then ϕ is a Kähler metric for f in S by (4.3).

We have a similar result for weakly Kähler maps:

(6.2) **Theorem.** Let S be a real space, $f: X \rightarrow S$ a proper and flat complex space over S and $s \in S$ be a point with infinitesimal neighborhoods S_n , and let $f_n: X_n \rightarrow S_n$ denote the maps obtained by base change. Suppose that there is a real analytic weakly Kähler metric for f_n for every n. Then f is weakly Kähler in s.

The proof is analogous to the proof of (6.1) using (5.4) instead of (4.12) and (4.13). – (6.2) implies of course a similar statement for maps of complex spaces.

In [18] Kodaira and Spencer proved that local deformations of compact Kähler manifolds are Kähler. The following theorem, which has been already announced without proof by Moishezon in [20] in a somewhat more special form, generalizes this result to the singular case. Compare also [17], p. 180.

(6.3) **Theorem.** Let S be a real space, $f: X \to S$ a proper and flat complex space over S, and let ϕ_0 be a real analytic Kähler metric on the fibre X_s of a point $s \in S$. Then, if the natural map $H^2(X_s, \mathbb{R}) \to H^2(X_s, \mathcal{O}_{X_s})$ is surjective, there exists – after shrinking S as a neighborhood of s if necessary – a weak real analytic Kähler metric ϕ for f with $\phi \mid X_s = \phi_0$.

Proof. Let S_n denote the *n*-th infinitesimal neighborhood of *s* in *S* and put X_n : $= X \times_S S_n.$ By (5.6) and our assumption the obstruction groups $O(\mathfrak{m}_s^n/\mathfrak{m}_s^{n+1})$ vanish for all *n*. Using (5.6) again, we see that ϕ_0 lifts to an element $(\phi_n)_{n \in \mathbb{N}}$ from $\varprojlim f_*(\mathscr{H}_{X_n/S_n})$. The assertion now follows from (5.4) and (4.3).

- (6.4) Let S be a real space and $f: X \rightarrow S$ be a proper and smooth complex space over S. We call f pseudo-Kähler, if for any hermitian coherent \mathcal{A}_S -module \mathcal{M} the following conditions are satisfied:
 - (1) The spectral sequence

$$E_1^{p,q}(\mathcal{M}) = R^q f_*(\Omega^q_{X/S} \otimes \mathcal{M}) \Rightarrow R^{p+q} f_*(f^{-1}(\mathcal{M}))$$

degenerates at the E_1 -level, The $E_1^{p,q}(\mathscr{A}_S)$ are locally free and the maps $E_1^{p,q}(\mathscr{A}_S) \otimes \mathscr{M} \to E_1^{p,q}(\mathscr{M})$ are bijective.

(2) If $F^*(\mathcal{M}) = F_n^*(\mathcal{M})$ denotes the corresponding descending filtration on $\mathbb{R}^n f_*(f^{-1}(\mathcal{M}))$, we have $\mathbb{F}^p(\mathcal{M}) \sqcup \overline{\mathbb{F}^{n-p+1}(\mathcal{M})} = \mathbb{R}^n f_*(f^{-1}(\mathcal{M}))$ for all p.

The map f is pseudo-Kähler if and only if the hermitian double complex $K^{\bullet, \cdot \cdot} := f_*(\mathscr{A}_{X/S}^{\bullet, \cdot \cdot})$ is pseudo-Kähler in the sense of (2.16). Indeed, $K^{\bullet, \cdot \cdot}$ is locally bounded and has \mathscr{A}_S -flat components, and $\mathscr{A}_{X/S}^{\bullet} \otimes \mathscr{M}$ resp. $\mathscr{A}_{X/S}^{p, \cdot \cdot} \otimes \mathscr{M}$ is an acyclic resolution of $f^{-1}(\mathscr{M})$ resp. $\Omega_{X/S}^p \otimes \mathscr{M}$.

We put $H^{p,q}(\mathcal{M}) := F^p(\mathcal{M}) \cap F^q(\mathcal{M})$ for (p,q) with p+q=n. (2.7) and the previous remark imply that for a pseudo-Kählerian map f the natural homomorphisms

$$\coprod_{p' \, \geqq \, p} H^{p', \, n-p'}(\mathcal{M}) \! \to \! F^p(\mathcal{M})$$

are bijective and that the modules $H^{p,q}(\mathcal{A}_s)$ are locally free with

$$H^{p,q}(\mathcal{A}_S) \bigotimes_{\mathcal{A}_S} \mathcal{M} = H^{p,q}(\mathcal{M}).$$

Obviously the fibres of a pseudo-Kählerian map are pseudo-Kählerian complex manifolds. By the classical Hodge theory compact Kähler manifolds are pseudo-Kähler in the above sense. This holds in fact more general for any complex manifold, which is a surjective image of a compact Kähler manifold, see [11]. – From (2.17) we obtain the following result.

- (6.5) **Theorem.** Let S be a real space and $f: X \rightarrow S$ a proper and smooth complex space over S, and let V be the set of points $s \in S$ such that X_s is pseudo-Kähler. Then:
 - (1) V is Zariski open in S.
 - (2) $f|V: X|V \rightarrow V$ is pseudo-Kähler.

It follows from (6.5) that our notion of a pseudo-Kähler map is stable under arbitrary base change.