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Uniqueness of Representation Spaces*

William Alan Feldman and James F. Porter
Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.

For a Banach lattice ¥, Schaefer ([3] or [2, p.173]) defined a locally compact
space X to be a representation space for V if the space C.(X) of continuous
functions on X having compact support can be identified with a dense ideal in
V. In this paper we show that if X and Y are representation spaces for V there
are dense, open subspaces of X and Y which are themselves representation
spaces for V and which are homeomorphic to each other. This homeomor-
phism preserves the features of ¥ in complete analogy to Schaefer’s description
for strong representation spaces (X a disjoint union of open, compact sets),
given in [2, p.173]. .

If L is an ideal in a Riesz space W, we will use the notation L+ for the set
of all non-zero lattice homomorphisms on L. We recall from [2, p. 161] that a
valuation on W is a non-negative extended real-valued function @ on W satisfy-
ing the properties

e+w)=0@)+ew) (s,w20);
PAW)=p@) A@W) (1,w20);
ptw)=[t p(Iwl) (t real).

Any z in L" defines a valuation z° on L given by z°(w) =z(|w|), which by the
theorem of [2, p. 163] can be extended uniquely to a valuation on W (denoted
by z). In fact, z(v)=sup{z(w): 0<w=|v|,weL}. If z° is finite on an ideal M
containing L, it determines a (unique) extension in M™* of z, given by
wi—z"(w*) —z%(w ™), which we will again denote by z.

We will need the following lemma on convergence of valuations.

Lemma 1. Let L be a (non-trivial) ideal in Riesz space W and let net {z;}
converge to z in L' with the weak topology o(L*,L). Then {zj(w)} converges to
z°(w) for every w in W,

Proof. There is an u>0 in L such that z(u)>0. Given w=0 in W, {z(wAnu)}
converges to z(w Anu) for all n. If z(w) is infinite then, given t>0, N can be
chosen so that z(wA Nu)=2z"(w) A Nz(u)>t. Eventually, z;(wA Nu)>t so that
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zj(w)>t. On the other hand, if z’(w)<+oc0c, N can be chosen so that
Nz(u)>z(w). But for large j, Nz;(u)>z(w), implying that {z{(w)} converges to
z(w).

If Banach lattice V' has a representation space X, it can be represented as a
space V(X) of continuous extended real-valued functions on X, each finite on a
dense set, containing C(X) as a dense ideal. For convenience, we review this
representation: Where I denotes the copy of C_(X) in ¥, each point in X can
be viewed as a member of I*, extending to a valuation x” on V. The mapping
(Pv)(x)=x"(v*")—x"(v~) maps V to a space V(X) of extended real-valued func-
tions on X, and maps I lattice isomorphically onto C_(X). Denoting ®v by 7,
we suppose D(x)=+o00 on an open set O in X, for v>0 in V. There is a
function @ in C_(X) such that # vanishes off O. Clearly, nii(x) < #(x) for all x in
X and n=1,2,..., so that x(vAnu)=x(nu). Since X separates I, we obtain
nu=v for all n. By the Archimedean property u=0. a contradiction. Thus each
v is finite on a dense set. By Lemma 1, each # is clearly continuous. It now
follows that V(X) is a lattice under the pointwise operations (on points of
finiteness), and @ is a lattice homomorphism. If =0 then [§| A [#]|=0 for all u
in I, so that v is orthogonal to I, since @ is one-to-one on I. By the denseness
of I in ¥, v=0. Thus @ is one-to-one on V.

We will need a characterization (stated below) of a Banach lattice having a
representation space which was established in [1].

A collection {e,} of positive elements in a Banach lattice V is a topological
order partition (t.0.p.) of V if the following conditions are satisfied:

(1) the lattice ideal I generated by {e,} is dense in V;
(2) for each index « there is an index f so that for any index y,

e,Ane,<te, (n=12..)

for some real ¢t depending on y;

(3) there is a continuous real-valued function & on the set I+ with the weak
topology a(I*,I) such that &(z) = z(e,) for all « and &(t z) =t&(z) for t>0.

We will write f>a to denote the relationship of condition (2), and we note
that f> o implies that for each u in I, there is a t>0 such that u A ne,<tey for
all n. For convenience, we will assume that a t.o.p. contains all suprema of its
finite subcollections.

Theorem [1]. There exists a representation space X for a Banach lattice V if and
only if there exists a to.p. {e,} of V. Moreover, C_(X) is the image in the
representation V(X) of the ideal generated by {e,}.

The following lemma on extensions of lattice homomorphisms will be used
throughout the paper.

Lemma 2. Let ¢ be a valuation on V such that 0<o(e,) and o(e)) < + oo for
indices o and f satisfying o <pf. Then ¢ is a lattice homomorphism on I.

Proof. We need only show that ¢ is finite on I. By condition (2) of the
definition, for every u>0 in I there is a number ¢>0 such that uAne,Stegz (n
=1,2,...). Thus for all n, p(u) A no(e,) =t p(ez) < + co. Since ¢(e,)>0, it follows
that ¢(u) is finite,
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Proposition. Let {e,} and {v,} be two to.p’s of Banach lattice V. Then
{e,Av,}, ,is atop. of V.

Proof. Let I and J be the dense ideal generated by {e,} and {v,}, respectively,
and let & and ¥~ be the corresponding functions on I+ and J* in the
definition. Clearly, InJ is the ideal generated by {e,Av,},; and is dense,
since InJ =1nJ. It is routine to verify that condition (2) of the definition is
satisfied. We will verify condition (3). First, we define the extended real-valued
function & on (InJ)* by setting &'(z) =&(z) if z extends to a lattice homomor-
phism on I and &'(z)= + oo otherwise. We note that &”(z)=z"(e,) for all « and
&'(tz)=t&'(z) for t>0. To see that & is continuous in the weak topology
o((InJ)*, InJ), let net {z;} converge to z in (InJ)*. Now if §'(z)= + oo, then
z*(e,)= +co for some «. In this case, &'(z;) ZzY(e,), which converges to + oo by
Lemma 1. On the other hand, if '(z) < 4 oo, then z(ea)>0 for some o and (of
course) for f>u, z(ey) < + 0. Since {z}} converges to z' on V, there is an index
Jo such that 0<zj(e,) and "‘(el,)<+oo for j=j,. By Lemma 2, z;is in I* for
Jj=Jjo so that &’ (z) &(z;) converges to &(z)=6"(z). Let ¥ be the continuous
extended real- valued functlon on (InJ)* corresponding to ¥. To verify that
the function % defined on (InJ)* by F(2)=&"(2) A ¥”(z) satisfies condition
(3). we will show that it is real-valued. Given z in (InJ)*, suppose ¥"'(z)= + oo.
Then z°(v;)= + o0 and z(e, A v;) >0 for some 8, « and 4. For f>u, z"(eﬁ)/\z (u(,)
=z(egAv,) is finite, so that z°(e;)) <+ oo (and z'(e,)>0). By Lemma 2, z is in
1", implying #(z)=8"(z)< + 0. The other properties of & can be easily
shown.

Theorem. (1) Let (V, ||+ ||) be a Banach lattice with representation space X. There
is a minimal weakly compact set M of positive Radon measures on X such that
for each v in 'V,

loll=sup | [8]du,
ueM x

where © is the representation of v as a continuous extended real-valued function
on X (finite on a dense set ).

(2) If the pair (Y, N) represents (V,| - ||) as does (X, M) above, then (Y,N) and
(X, M) are equivalent in the following sense: There exists a homeomorphism of a
dense open subspace X,<X onto a like subspace Y,ZY, an isomorphism of
vector lattices C(Yy)— C (X ,) whose adjoint carries M :=M|X, to N,:=N| Yo,
and the pair (X ,, M) is another representation for (V, || - || )i

Proof. Let @ be the isomorphism of V onto its representation as functions on
X and let I be the ideal @' C_(X) in V.

For (1), we note that =" from C_(X) with the order topology into (V, || - |)
is continuous with dense image, so that its adjoint (#~!)" is a bijection of the
continuous dual ¥’ of V onto a weakly dense subspace of the space .#(X) of
Radon measures on X. By Bauer’s theorem [2, p.87] there is a unique
minimal ¢(V', V)-compact subset P of {peV’: ¢ =20, |@| <1} such that for each
vinV,

vl =sup{o(|v]): peP}.
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Letting © denote ®(v) and M denote (P~ 'YP, we obtain that |u]
=sup{ | |a|du: ueM} for all u in 1. Given v in ¥, there is a positive increasing
X

sequence {u,} in I converging in norm to |v|; thus {@i,} converges pointwise on
X to [9]. For each u in M, by the Monotone Convergence Theorem, fﬁ,, du
converges to [ |9|du. Thus X

X

o] = lim [lu, | =sup{| 2| dp: ueM}.
X

n— 00

We remark that if

ol =sup{[ [dldv: veH} =sup{|v(®v)|: veH}
X

for a minimal weakly compact collection H, then vod is in V' for each v in H,
so that the weak continuity of @' on H implies @ H contains P. By the
uniqueness of P in Bauer’s theorem, H=(®~!) P=M.

For (2), we let ¥ be the isomorphism of V' onto its representation as
functions on Y and we let J be the ideal ¥ ' C_(Y) in V. We denote by X, the
collection of lattice homomorphisms in X which do not vanish on InJ.
Clearly, X, is open in X and C_(X,) is contained in C_(X). We will first
show that @~'C_(X,) is dense in V. Given u>0 in InJ and >0, the
function # has compact support in X. Let y be a function in C_(X) which is
one on the (closed) support of # and let g be a continuous function on X,
0<g=<1, which is one on {xeX:d(x)=¢/|x|} and zero outside
{xeX:i(x)=¢/(2]lx])}. Then the support of #ig is in this latter set, which is
compact in X,, so that #ig is in C_(X,). Furthermore, |i(x)
—1(x) g(x)| <(e/||x]) x(x) for all x in X, implying ||u—& (ug)| <e. Since InJ is
dense in ¥, it follows that #~'C (X ) is dense in V. Thus if § vanishes on X,
it is orthogonal to a dense ideal and therefore zero; hence, X « is dense in X.
For later use, we show that @~'C_(X,) is contained in InJ. Given W in
C.(X,) with compact support K, for each x in K there is a member u of InJ
such that x(u)>0. The open supports of finitely many of these functions
cover K, so that w is dominated by a multiple of their (finite) supremum, as
desired. By the theorem above, I and J are ideals generated by t.o.p.’s; thus, by
the Proposition, InJ is the ideal generated by a t.o.p. of V. There is a function
F:(InJ)* >R (chosen as in the proof of the Proposition above), a corre-
sponding representation space Z ={ze(InJ)*: #(z)=1} and an isomorphism I"
of V onto its representation as functions on Z for which InJ=TI'~"1C_(Z2).
Since each x in X, restricts to a non-trivial lattice homomorphism on InJ
(with #(x)>0), we can define a mapping 7,: X, —Z by setting 7,(x)=x/Z ().
Since # is continuous, it follows that 7, is continuous. Let x, and x, be
distinct points in X, and let u be a member of @' C (X ,) for which u(x,)=1
and #i(x,)=0. Since (as noted above) u is in InJ, we obtain (r, x,)(#)+0 and
(t%,)()=0, showing that 7, is one-to-one. Viewing I as the ideal of a t.o.p. of
V, one interprets X as {xel*: &(z)=1} for an appropriate continuous function
&:1* >R (corresponding to the t.o.p.). In this formulation, one can verify that
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11 '(z2)=2/&(2). It now follows from Lemma 1 and the continuity of & that 7, is
a homeomorphism onto 7, X _. To see that 7, X, is open in Z, consider z in
7, X . By definition (in the proof of the Proposition above) &'(z) is finite, and
by the continuity of & on Z there is a neighborhood U of z in Z on which &
is finite. Thus all members of U are extendable to I ie., U is contained in
7, X,. Clearly t, X, is dense in Z, since (I'v)(r, X,)=0 implies =0 on X,.
We note that for v in ¥V and x in Xy

ix)=Z(x)(I'v)(t, x).

Thus the support of ? in X is the same as the support of (I'v)ot,. It follows
that I'~'C_(7,X,)=0"'C(X,) is dense in V. By symmetry, for Y,
={yeY: y(InJ)#0}, there is a corresponding homeomorphism 7,: Y ,—Z with
dense, open image, and I'"'C_(z,Y,)=%~"'C_(Y,) is dense in V. We define
Z, to be 7,X,n1,Y,. Clearly, Z, is dense and open in Z and
Colt; X )NC (1, Y) is contained in C.(Z,). Equivalently,
P71 C (X )Y~ C(Y,) is contained in I'~'C_(Z,), so that r-tc (z,) is
dense in V. The mapping t=15 "7, is a homeomorphism of Xo:=17'Z, onto
Yo:=17'Z,, and these spaces are open in X and Y, respectively. By the
indented formula above, ®~'C_(X,) is I' "' C_(Z,), and hence is dense in V.
Similarly, ¥~'C (Y,) is I'~' C(Z,), so that X, and Y, (representation spaces)
are dense in X and Y, respectively. Thus (a) is established. By part (1) of this
theorem, there is a unique minimal weakly compact set M o of Radon measures
on X, characterizing the norm of V. For (c), we need only note that for each u

in M and v in V, {[0ldp= | (81X ,)|du, since it is true for all v in &~ C. (X,
X Xo
Then |jv||=sup{ | [0|du: ueM}, so that M,=M|X, by the uniqueness of M.

Xo

For (b), it is clear that k:=®¥ ' is a lattice isomorphism of C,(Y,) onto
C.(Xy), and that K’M,=(®¥) (P~ ")) P=(¥~'YP=N|X,, where ® and ¥ are
appropriately restricted and P is the Bauer set mentioned in the proof of part
(1).

We remark that one can prove the following Stone-Weierstrass-type result,
in analogy to [2, p.177]: Let H be a vector sublattice of a Banach space V,
whose closure contains a t.o.p. of V. If H separates the nonzero lattice homo-
morphisms on the ideal generated in V by the t.o.p., then H is dense in V.
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