

Werk

Titel: Uniqueness of Representation Spaces. Autor: Porter, James F.; Feldamnn, William A.

Jahr: 1982

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0179|log22

Kontakt/Contact

Digizeitschriften e.V. SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Uniqueness of Representation Spaces*

William Alan Feldman and James F. Porter

Department of Mathematics, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.

For a Banach lattice V, Schaefer ([3] or [2, p. 173]) defined a locally compact space X to be a representation space for V if the space $C_{\infty}(X)$ of continuous functions on X having compact support can be identified with a dense ideal in V. In this paper we show that if X and Y are representation spaces for V there are dense, open subspaces of X and Y which are themselves representation spaces for V and which are homeomorphic to each other. This homeomorphism preserves the features of V in complete analogy to Schaefer's description for strong representation spaces (X a disjoint union of open, compact sets), given in [2, p. 173].

If L is an ideal in a Riesz space W, we will use the notation L^+ for the set of all non-zero lattice homomorphisms on L. We recall from [2, p. 161] that a valuation on W is a non-negative extended real-valued function φ on W satisfying the properties

$$\varphi(v+w) = \varphi(v) + \varphi(w) \qquad (v, w \ge 0);$$

$$\varphi(v \land w) = \varphi(v) \land \varphi(w) \qquad (v, w \ge 0);$$

$$\varphi(t w) = |t| \varphi(|w|) \qquad (t \text{ real}).$$

Any z in L^+ defines a valuation z^v on L given by $z^v(w) = z(|w|)$, which by the theorem of [2, p. 163] can be extended uniquely to a valuation on W (denoted by z^v). In fact, $z^v(v) = \sup\{z(w): 0 \le w \le |v|, w \in L\}$. If z^v is finite on an ideal M containing L, it determines a (unique) extension in M^+ of z, given by $w \mapsto z^v(w^+) - z^v(w^-)$, which we will again denote by z.

We will need the following lemma on convergence of valuations.

Lemma 1. Let L be a (non-trivial) ideal in Riesz space W and let net $\{z_j\}$ converge to z in L^+ with the weak topology $\sigma(L^+, L)$. Then $\{z_j^v(w)\}$ converges to $z^v(w)$ for every w in W.

Proof. There is an u>0 in L such that z(u)>0. Given $w\ge 0$ in W, $\{z_j(w\wedge nu)\}$ converges to $z(w\wedge nu)$ for all n. If $z^v(w)$ is infinite then, given t>0, N can be chosen so that $z(w\wedge Nu)=z^v(w)\wedge Nz(u)>t$. Eventually, $z_j(w\wedge Nu)>t$ so that

Supported in part by dual funding from NSF-EPSCOR Grant ISP 8011447 and the State of Arkansas

 $z_j^v(w) > t$. On the other hand, if $z^v(w) < +\infty$, N can be chosen so that Nz(u) > z(w). But for large j, $Nz_j(u) > z(w)$, implying that $\{z_j^v(w)\}$ converges to z(w).

If Banach lattice V has a representation space X, it can be represented as a space V(X) of continuous extended real-valued functions on X, each finite on a dense set, containing $C_{\infty}(X)$ as a dense ideal. For convenience, we review this representation: Where I denotes the copy of $C_{\infty}(X)$ in V, each point in X can be viewed as a member of I^+ , extending to a valuation x^{ν} on V. The mapping $(\Phi v)(x) = x^{v}(v^{+}) - x^{v}(v^{-})$ maps V to a space V(X) of extended real-valued functions on X, and maps I lattice isomorphically onto $C_{\infty}(X)$. Denoting Φv by \hat{v} , we suppose $\hat{v}(x) = +\infty$ on an open set O in X, for v > 0 in V. There is a function \hat{u} in $C_{\infty}(X)$ such that \hat{u} vanishes off O. Clearly, $n \hat{u}(x) \leq \hat{v}(x)$ for all x in X and n=1,2,..., so that $x(v \wedge nu) = x(nu)$. Since X separates I, we obtain $nu \le v$ for all n. By the Archimedean property u=0, a contradiction. Thus each \hat{v} is finite on a dense set. By Lemma 1, each \hat{v} is clearly continuous. It now follows that V(X) is a lattice under the pointwise operations (on points of finiteness), and Φ is a lattice homomorphism. If $\hat{v} = 0$ then $|\hat{v}| \wedge |\hat{u}| = 0$ for all uin I, so that v is orthogonal to I, since Φ is one-to-one on I. By the denseness of I in V, v=0. Thus Φ is one-to-one on V.

We will need a characterization (stated below) of a Banach lattice having a representation space which was established in [1].

A collection $\{e_{\alpha}\}$ of positive elements in a Banach lattice V is a topological order partition (t.o.p.) of V if the following conditions are satisfied:

- (1) the lattice ideal I generated by $\{e_a\}$ is dense in V;
- (2) for each index α there is an index β so that for any index γ .

$$e_{\gamma} \wedge n \, e_{\alpha} \leq t \, e_{\beta} \quad (n=1,2,\ldots)$$

for some real t depending on γ ;

(3) there is a continuous real-valued function $\mathscr E$ on the set I^+ with the weak topology $\sigma(I^+, I)$ such that $\mathscr E(z) \ge z(e_\alpha)$ for all α and $\mathscr E(t\,z) = t\mathscr E(z)$ for t > 0.

We will write $\beta > \alpha$ to denote the relationship of condition (2), and we note that $\beta > \alpha$ implies that for each u in I, there is a t > 0 such that $u \wedge n e_{\alpha} \le t e_{\beta}$ for all n. For convenience, we will assume that a t.o.p. contains all suprema of its finite subcollections.

Theorem [1]. There exists a representation space X for a Banach lattice V if and only if there exists a t.o.p. $\{e_{\alpha}\}$ of V. Moreover, $C_{\infty}(X)$ is the image in the representation V(X) of the ideal generated by $\{e_{\alpha}\}$.

The following lemma on extensions of lattice homomorphisms will be used throughout the paper.

Lemma 2. Let φ be a valuation on V such that $0 < \varphi(e_{\alpha})$ and $\varphi(e_{\beta}) < +\infty$ for indices α and β satisfying $\alpha < \beta$. Then φ is a lattice homomorphism on I.

Proof. We need only show that φ is finite on I. By condition (2) of the definition, for every $u \ge 0$ in I there is a number t > 0 such that $u \wedge n e_{\alpha} \le t e_{\beta}$ (n = 1, 2, ...). Thus for all n, $\varphi(u) \wedge n \varphi(e_{\alpha}) \le t \varphi(e_{\beta}) < +\infty$. Since $\varphi(e_{\alpha}) > 0$, it follows that $\varphi(u)$ is finite.

Proposition. Let $\{e_{\alpha}\}$ and $\{v_{\lambda}\}$ be two t.o.p.'s of Banach lattice V. Then $\{e_{\alpha} \wedge v_{\lambda}\}_{\alpha,\lambda}$ is a t.o.p. of V.

Proof. Let I and J be the dense ideal generated by $\{e_{\alpha}\}$ and $\{v_{\lambda}\}$, respectively, and let $\mathscr E$ and $\mathscr V$ be the corresponding functions on I^+ and J^+ in the definition. Clearly, $I \cap J$ is the ideal generated by $\{e_{\alpha} \wedge v_{\lambda}\}_{\alpha,\lambda}$ and is dense, since $\overline{I \cap J} = \overline{I} \cap \overline{J}$. It is routine to verify that condition (2) of the definition is satisfied. We will verify condition (3). First, we define the extended real-valued function \mathscr{E}' on $(I \cap J)^+$ by setting $\mathscr{E}'(z) = \mathscr{E}(z)$ if z extends to a lattice homomorphism on I and $\mathscr{E}'(z) = +\infty$ otherwise. We note that $\mathscr{E}'(z) \geq z^v(e_x)$ for all α and $\mathscr{E}'(tz) = t\mathscr{E}'(z)$ for t > 0. To see that \mathscr{E}' is continuous in the weak topology $\sigma((I \cap J)^+, I \cap J)$, let net $\{z_i\}$ converge to z in $(I \cap J)^+$. Now if $\mathscr{E}'(z) = +\infty$, then $z^{v}(e_{\alpha}) = +\infty$ for some α . In this case, $\mathscr{E}'(z_{i}) \geq z_{i}^{v}(e_{\alpha})$, which converges to $+\infty$ by Lemma 1. On the other hand, if $\mathscr{E}'(z) < +\infty$, then $z(e_{\alpha}) > 0$ for some α and (of course) for $\beta > \alpha$, $z(e_{\beta}) < +\infty$. Since $\{z_{i}^{\nu}\}$ converges to z^{ν} on V, there is an index j_0 such that $0 < z_j^v(e_\alpha)$ and $z_j^v(e_\beta) < +\infty$ for $j \ge j_0$. By Lemma 2, z_j is in I^+ for $j \ge j_0$ so that $\mathscr{E}'(z_j) = \mathscr{E}(z_j)$ converges to $\mathscr{E}(z) = \mathscr{E}'(z)$. Let \mathscr{V}' be the continuous extended real-valued function on $(I \cap J)^+$ corresponding to \mathscr{V} . To verify that the function \mathscr{F} defined on $(I \cap J)^+$ by $\mathscr{F}(z) = \mathscr{E}'(z) \wedge \mathscr{V}'(z)$ satisfies condition (3), we will show that it is real-valued. Given z in $(I \cap J)^+$, suppose $\mathscr{V}'(z) = +\infty$. Then $z^{\nu}(v_{\delta}) = +\infty$ and $z(e_{\alpha} \wedge v_{\lambda}) > 0$ for some δ , α and λ . For $\beta > \alpha$, $z^{\nu}(e_{\beta}) \wedge z^{\nu}(v_{\delta})$ $=z(e_{\beta} \wedge v_{\delta})$ is finite, so that $z^{\nu}(e_{\beta}) < +\infty$ (and $z^{\nu}(e_{\gamma}) > 0$). By Lemma 2, z is in I^+ , implying $\mathscr{F}(z) = \mathscr{E}'(z) < +\infty$. The other properties of \mathscr{F} can be easily shown.

Theorem. (1) Let $(V, \|\cdot\|)$ be a Banach lattice with representation space X. There is a minimal weakly compact set M of positive Radon measures on X such that for each v in V,

$$||v|| = \sup_{\mu \in M} \int_{X} |\widehat{v}| \, d\mu,$$

where \hat{v} is the representation of v as a continuous extended real-valued function on X (finite on a dense set).

(2) If the pair (Y,N) represents $(V,\|\cdot\|)$ as does (X,M) above, then (Y,N) and (X,M) are equivalent in the following sense: There exists a homeomorphism of a dense open subspace $X_0 \subseteq X$ onto a like subspace $Y_0 \subseteq Y$, an isomorphism of vector lattices $C_{\infty}(Y_0) \to C_{\infty}(X_0)$ whose adjoint carries $M_0 := M|X_0$ to $N_0 := N|Y_0$, and the pair (X_0,M_0) is another representation for $(V,\|\cdot\|)$.

Proof. Let Φ be the isomorphism of V onto its representation as functions on X and let I be the ideal $\Phi^{-1}C_{\infty}(X)$ in V.

For (1), we note that Φ^{-1} from $C_{\infty}(X)$ with the order topology into $(V, \|\cdot\|)$ is continuous with dense image, so that its adjoint $(\Phi^{-1})'$ is a bijection of the continuous dual V' of V onto a weakly dense subspace of the space $\mathcal{M}(X)$ of Radon measures on X. By Bauer's theorem [2, p.87] there is a unique minimal $\sigma(V', V)$ -compact subset P of $\{\varphi \in V' : \varphi \ge 0, \|\varphi\| \le 1\}$ such that for each v in V,

$$||v|| = \sup \{ \varphi(|v|) \colon \varphi \in P \}.$$

Letting \hat{v} denote $\Phi(v)$ and M denote $(\Phi^{-1})'P$, we obtain that $||u|| = \sup\{\int_X |\hat{u}| \, d\mu \colon \mu \in M\}$ for all u in I. Given v in V, there is a positive increasing sequence $\{u_n\}$ in I converging in norm to |v|; thus $\{\hat{u}_n\}$ converges pointwise on X to $|\hat{v}|$. For each μ in M, by the Monotone Convergence Theorem, $\int_X \hat{u}_n \, d\mu$ converges to $\int_X |\hat{v}| \, d\mu$. Thus

$$||v|| = \lim_{n \to \infty} ||u_n|| = \sup \{ \int_X |\hat{v}| d\mu : \mu \in M \}.$$

We remark that if

$$||v|| = \sup \{ \int_{V} |\hat{v}| dv : v \in H \} = \sup \{ |v(\Phi v)| : v \in H \}$$

for a minimal weakly compact collection H, then $v \circ \Phi$ is in V' for each v in H, so that the weak continuity of Φ' on H implies $\Phi'H$ contains P. By the uniqueness of P in Bauer's theorem, $H = (\Phi^{-1})'P = M$.

For (2), we let Ψ be the isomorphism of V onto its representation as functions on Y and we let J be the ideal $\Psi^{-1}C_{\infty}(Y)$ in V. We denote by X_{*} the collection of lattice homomorphisms in X which do not vanish on $I \cap J$. Clearly, X_* is open in X and $C_{\infty}(X_*)$ is contained in $C_{\infty}(X)$. We will first show that $\Phi^{-1}C_{\infty}(X_*)$ is dense in V. Given u>0 in $I\cap J$ and $\varepsilon>0$, the function \hat{u} has compact support in X. Let χ be a function in $C_{\infty}(X)$ which is one on the (closed) support of \hat{u} and let g be a continuous function on X, $0 \le g \le 1$, which is one on $\{x \in X : \hat{u}(x) \ge \varepsilon / ||\chi||\}$ and zero outside $\{x \in X : \hat{u}(x) \ge \varepsilon/(2\|\chi\|)\}$. Then the support of $\hat{u}g$ is in this latter set, which is compact in X_* , so that $\hat{u}g$ is in $C_{\infty}(X_*)$. Furthermore, $|\hat{u}(x) - \hat{u}(x)g(x)| < (\varepsilon/\|\chi\|)\chi(x)$ for all x in X, implying $\|u - \Phi^{-1}(ug)\| < \varepsilon$. Since $I \cap J$ is dense in V, it follows that $\Phi^{-1}C_{\infty}(X_*)$ is dense in V. Thus if \hat{v} vanishes on X_* it is orthogonal to a dense ideal and therefore zero; hence, X_* is dense in X. For later use, we show that $\Phi^{-1}C_{\infty}(X_*)$ is contained in $I \cap J$. Given \widehat{w} in $C_{\infty}(X_{\star})$ with compact support K, for each x in K there is a member u of $I \cap J$ such that x(u)>0. The open supports of finitely many of these functions \hat{u} cover K, so that w is dominated by a multiple of their (finite) supremum, as desired. By the theorem above, I and J are ideals generated by t.o.p.'s; thus, by the Proposition, $I \cap J$ is the ideal generated by a t.o.p. of V. There is a function $\mathscr{F}: (I \cap J)^+ \to \mathbb{R}$ (chosen as in the proof of the Proposition above), a corresponding representation space $Z = \{z \in (I \cap J)^+ : \mathcal{F}(z) = 1\}$ and an isomorphism Γ of V onto its representation as functions on Z for which $I \cap J = \Gamma^{-1} C_{\infty}(Z)$. Since each x in X_* restricts to a non-trivial lattice homomorphism on $I \cap J$ (with $\mathcal{F}(x) > 0$), we can define a mapping $\tau_1: X_* \to Z$ by setting $\tau_1(x) = x/\mathcal{F}(x)$. Since \mathcal{F} is continuous, it follows that τ_1 is continuous. Let x_1 and x_2 be distinct points in X_* and let u be a member of $\Phi^{-1}C_{\infty}(X_*)$ for which $\hat{u}(x_1)=1$ and $\widehat{u}(x_2) = 0$. Since (as noted above) u is in $I \cap J$, we obtain $(\tau_1 x_1)(u) \neq 0$ and $(\tau_1 x_2)(u) = 0$, showing that τ_1 is one-to-one. Viewing I as the ideal of a t.o.p. of V, one interprets X as $\{x \in I^+: \mathcal{E}(z) = 1\}$ for an appropriate continuous function $\mathscr{E}: I^+ \to \mathbb{R}$ (corresponding to the t.o.p.). In this formulation, one can verify that

 $\tau_1^{-1}(z) = z/\mathscr{E}(z)$. It now follows from Lemma 1 and the continuity of \mathscr{E} that τ_1 is a homeomorphism onto $\tau_1 X_*$. To see that $\tau_1 X_*$ is open in Z, consider z in $\tau_1 X_*$. By definition (in the proof of the Proposition above) $\mathscr{E}'(z)$ is finite, and by the continuity of \mathscr{E}' on Z there is a neighborhood U of z in Z on which \mathscr{E}' is finite. Thus all members of U are extendable to I^+ ; i.e., U is contained in $\tau_1 X_*$. Clearly $\tau_1 X_*$ is dense in Z, since $(\Gamma v)(\tau_1 X_*) = 0$ implies $\hat{v} = 0$ on X_* . We note that for v in V and x in X_{*} ,

$$\hat{v}(x) = \mathcal{F}(x) (\Gamma v) (\tau_1 x).$$

Thus the support of \hat{v} in X_* is the same as the support of $(\Gamma v) \circ \tau_1$. It follows that $\Gamma^{-1}C_{\infty}(\tau_1X_*) = \Phi^{-1}C_{\infty}(X_*)$ is dense in V. By symmetry, for Y_* $= \{ y \in Y: y(I \cap J) \neq 0 \}, \text{ there is a corresponding homeomorphism } \tau_2: Y_* \to Z \text{ with}$ dense, open image, and $\Gamma^{-1}C_{\infty}(\tau_2 Y_*) = \Psi^{-1}C_{\infty}(Y_*)$ is dense in V. We define Z_0 to be $\tau_1 X_* \cap \tau_2 Y_*$. Clearly, Z_0 is dense and open in Z and $C_{\infty}(\tau_1 X_*) \cap C_{\infty}(\tau_2 Y_*)$ is contained in $C_{\infty}(Z_0)$. Equivalently, $\Phi^{-1}C_{\infty}(X_*) \cap \psi^{-1}C_{\infty}(Y_*)$ is contained in $\Gamma^{-1}C_{\infty}(Z_0)$, so that $\Gamma^{-1}C_{\infty}(Z_0)$ is dense in V. The mapping $\tau = \tau_2^{-1} \tau_1$ is a homeomorphism of $X_0 := \tau_1^{-1} Z_0$ onto $Y_0 := \tau_2^{-1} Z_0$, and these spaces are open in X and Y, respectively. By the indented formula above, $\Phi^{-1}C_{\infty}(X_0)$ is $\Gamma^{-1}C_{\infty}(Z_0)$, and hence is dense in V. Similarly, $\Psi^{-1}C_{\infty}(Y_0)$ is $\Gamma^{-1}C_{\infty}(Z_0)$, so that X_0 and Y_0 (representation spaces) are dense in X and Y, respectively. Thus (a) is established. By part (1) of this theorem, there is a unique minimal weakly compact set M₀ of Radon measures on X_0 characterizing the norm of V. For (c), we need only note that for each μ in M and v in V, $\int_X |\widehat{v}| d\mu = \int_{X_0} |(\widehat{v}|X_0)| d\mu$, since it is true for all v in $\Phi^{-1}C_\infty(X_0)$. Then $||v|| = \sup\{\int_{X_0} |\widehat{v}| d\mu : \mu \in M\}$, so that $M_0 = M|X_0$ by the uniqueness of M_0 .

For (b), it is clear that $k := \Phi \Psi^{-1}$ is a lattice isomorphism of $C_{\infty}(Y_0)$ onto $C_{\infty}(X_0)$, and that $k'M_0 = (\Phi \Psi)'(\Phi^{-1})'P = (\Psi^{-1})'P = N|X_0$, where Φ and Ψ are appropriately restricted and P is the Bauer set mentioned in the proof of part (1).

We remark that one can prove the following Stone-Weierstrass-type result, in analogy to [2, p. 177]: Let H be a vector sublattice of a Banach space V, whose closure contains a t.o.p. of V. If H separates the nonzero lattice homomorphisms on the ideal generated in V by the t.o.p., then H is dense in V.

References

- 1. Feldman, W.A., Porter, J.F.: Banach lattices with locally compact representation spaces. Math. Z. 174, 233-239 (1980)
- 2. Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974
- 3. Schaefer, H.H.: On the representation of Banach lattices by continuous numerical functions. Math. Z. 125, 215-232 (1972)

Received July 15, 1981