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Framed Links for Peiffer Identities

Allan J. Sieradski
Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.

1. Introduction

An aspherical CW complex K is one whose higher dimensional homotopy groups
are trivial. In [15], Whitehead questioned whether asphericity is a hereditary
property for 2-dimensional CW complexes, i.e., whether every subcomplex of
an aspherical 2-dimensional CW complex is itself aspherical. Despite considerable
investigation of aspherical 2-dimensional CW complexes since then (for example,
[1-10]), this question remains unresolved, in general.

A 2-dimensional complex K is aspherical if and only if its second homotopy
group 7,(K) is trivial, i.e., every spherical map f: S* » K admits a null homotopy
H: B*- K. It seems reasonable to investigate an aspherical 2-dimensional
complex K and its subcomplexes from the viewpoint of the complexity of the null
homotopies required for spherical maps into K. This is the purpose of this paper.

In Sects. 2 and 3, we show how to measure the complexity of a null homotopy
H by the framed link Ay in B obtained as the closure of the inverse images under
H of the open 2-cells of K. In Sect. 4, we analyze the special situation of a 2-
dimensional complex K which admits for each spherical map f: S - K a null
homotopy H: B* - K whose framed link A, is geometrically split. In Sect. 5,
the following is established.

Theorem 1. A group presentation (X:R) is aspherical (in the sense of Lyndon
and Schupp [9]) and satisfies the Relator Conditions (6) if and only if every spherical
map into the cellular model K of (X :R) admits a null homotopy whose framed link
is geometrically split.

In Sect. 6, we show how to begin with an abstract framed link and realize it
as the framed link A, of a null homotopy H: B> — K of a spherical map f: 5> -» K
into some 2-dimensional complex K. In several instances, we apply this construc-
tion to a non-geometrically split link to produce a presentation (X :R) which is
not aspherical (in the sense of [9]), yet whose cellular model K is aspherical.
Moreover, these examples show that the asphericity of a group presentation,
while a hereditary property, is not a combinatorial invariant of the presentation.
In fact, we have
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Theorem 2. Every group presentation is combinatorially equivalent (in the sense
of [14]) to one which is not aspherical.

This work began with an attempt to deduce Papakyriakopoulos’ result [11]
on the asphericity of a knot complement from just these facts: (i) asphericity of
a group presentation is a hereditary property, and (ii) a knot complement has
as a strong deformation retract the cellular model of a subpresentation of a
presentation that is combinatorially equivalent to the trivial presentation (X : X),
which is definitely aspherical. Theorem 2 frustrates this approach.

To areader of [9], it should be clear that Statement (5) of Sect. 4 and Theorem 1
of Sect. 5 of this paper serve as a substitute for [9, III. Prop. 10.1]. I understand
that 1. Chiswell, D. Collins, and J. Huebschmann have joint work that offers
further alternatives to the treatment of asphericity of group presentations.

I thank J. Brandenburg and M.N. Dyer for numerous conversations that
helped in the formulation of this work, and D. Collins for suggesting the
terminology for Peiffer transformations employed in Sect. 5.

2. Nothing New Here

Let (X:R) be any group presentation. Let F(X) denote the free group on the
set X of generators, and let N denote the normal closure in F(X) of the set R of
relators. The presentation (X :R) has a cellular model K=c®Uctuc? (xe X, reR)
whose cells are oriented by characteristic maps ¢,: B' > K and ¢,: B?>K
such that there is an identification n,(K*)=F(X), under which the cellular path
¢ represents x, and the attaching map ¢, = ¢,|S! represents r.

Let F(X:R) denote the free group on the set F(X)x R. There is an action
of F(X) on F(X :R) given by x(w, r)=(xwx~", ), and there is the homotopy action
of 7, (K') on the relative homotopy group n,(K?, K*). Let : F(X:R) - n,(K?% K?')
denote the unique homomorphism that respects these actions and also carries
(1,7) to [,: (B2, S)— (K2, K')], for all reR.

(1) n: F(X:R)—- n,(K?, K?") is surjective.

To illustrate this fact, consider in the 2-ball B?> a sequence B,, ..., B, of
disjoint discs centered on the axis 0 x B! and compatibly oriented with B2. Let
{1,-..,¢, denote line segments joining these discs to the basepoint *=(1,0) in
the boundary S of B2. Associated with a sequence w=((w, )™, ..., (Wp, ,)™")
in the generators of F(X:R) and their inverses (hereafter, w is called a word in
F(X:R) and often abbreviated by [](w;,r)*) is a map f,: (B% S')—(K? K*")
which carries the discs By, ..., B, via the signed characteristic maps ¢ ¢,,, ..., &,9,,
and sends their complement into K, with the arcs 7, ..., £, mapped as represen-
tative loops for the elements w,, ..., w, in F(X)==,(K"). If the word w represents
(i.e., freely reduces to) the group element WeF(X:R), then f, represents the
homotopy class n(W)en,(K? K*). Simplicial techniques show that any map
(B%,8')—(K?, K') is homotopic to one of the form f,, for some word w in F(X:R),
thus 7 is surjective.

The homomorphism 8: F(X:R)— F(X), é(w,r)=wrw~!, and the boundary
operator 9: n,(K?, K')— n,(K!)=F(X) are both F(X)-homomorphisms, where
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their range is given the action of conjugation, and they are compatible with the
homomorphism n: F(X :R)— n,(K?, K').

Notice that Im(d: F(X :R) — F(X)) is the normal closure N in F(X) of the set
R of relators, and E=Ker(0: F(X:R)— F(X)), called the group of identities for
the presentation (X :R), contains Ker#. The subgroup P<E of Peiffer identities
for the presentation (X :R) is the normal closure in F(X:R) of the set of basic
Peiffer elements

{(w, r)(v, s)(w, 1)~ H(wrw™'v,5)"*: w, ve F(X), r, seR}.

(This is the notation employed by Ratcliffe [13] for these special identities studied
by Peiffer [12].)

There is this convenient algebraic characterization of Peiffer identities
([10, Theorem 3.1]):

(2) A word w=[](w;,r)* in F(X:R) represents a Peiffer identity WeP if and
only if (W)=[[w;riiw; =1 in F(X) and there is a pairing (i,j) of the indices
of w such that (a) r;=r;, (b) &= —¢&;, and (c) w;ew;N.

Whenever the word w represents an identity element WeE, the map f,:
(B? S')— (K? K') can be required to carry S! to c’cK. In this case, we call f,
a spherical map, since it easily converts to a map S2 - K.

There is also this homotopy characterization of the Peiffer identities:

(3) A word w in F(X:R) represents a Peiffer identity WeP if and only if the map
fw: (B%, ")~ (K?, K*") is null homotopic. In short, P=Ker(n: F(X :R) - n,(K? KY)).

Here is the geometry that underlies this assertion. By simplicial techniques,
any homotopy H: (B? S')xI—(K? K') of the map f, can be deformed to
become one for which the closure of each inverse image H~'(c?) of an attached
2-cell ¢} in K is a framed link A, in this sense: each component L of A, is either
an embedded solid cylinder D? x B! whose end discs D? x +1 lie in B2 x {0, 1}
or is an embedded solid torus D? x S, in either case, on whose oriented cross-
sectional discs D* xt the homotopy H acts like the characteristic map ¢, for
the 2-cell ¢?. The embedding of the segment * x B! on the cylinder, or the loop
* x S* of the torus, gives an index curve y, on the cylindrical or toroidal component
L that records its twisting. When the homotopy H is in such a form, we call the
union ( J {A,: reR} the framed link Ay of the homotopy H.

If f,, is a spherical map and H is a null homotopy for f,, the ends of a cylindrical
component L of A, must be two discs in just the floor B x 0 of B? x I, and so they
represent two factors (w;,r;)" and (w;,r;)* of the word w for which r=r=r;
and &= —e¢;. Furthermore, the index curve y, on L and the arcs ¢; and ¢ ;in the
floor B2 x0 constitute a null homotopic loop in B?x I. Since H is constant
on y, and f, represents w; and w; on #; and /;, it follows that w;N = w;N in 7, (K)
=F(X)/N. So the algebraic characterization (2) shows that o represents a Peiffer
identity WeP. Thus, P contains Ker#.

" For the converse portion of (3), notice that each basic Peiffer element comes
from a word w=((w, ), (v, s), (w,7)~ !, (wrw~'v, 5)~!) for which the map f,, admits
a null homotopy H with the framed link Ay in Fig. 1. In this figure, the index
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Fig. 1

curves are indicated by the dotted lines that appear on the front of the framing
cylinders. In subsequent figures, more involved framed links are depicted by
just their central links, with the understanding that were the missing framing
to be supplied, the index curves would appear on the front of all the link compo-
nents. In this way, twists in a link component appear as self-crossings of the
central link.

Statements (1) and (3) yield Whitehead’s basic description [15] of the relative
homotopy group 7,(K2, K') as a free crossed module.

3. Framed Links

We pursue further the geometry of the framed link Ay of a null homotopy H for
a spherical map f,, where w is a word that represents a Peiffer identity WeP
for the presentation (X :R).

For any word v that is an unreduced product of conjugates of basic Peiffer
elements and their inverses, there is a null homotopy for f, with framed link of
this form:

and any reduction of v (by some cancellation in the free group F(X:R)) to the
word o provides a homotopy from f,, to f, with a framed link of this form:

ln. u.--'--.w e ..-u-..‘

Stacked together, these provide a null homotopy H, in cancellation form, for f,,.
The framed link 4, may involve both toroidal and cylindrical components that
are knotted, linked, and twisted. '
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For example, for any presentation (X :R), the word

v=[w, )(wr,)(w, 1)~ (wr?, 1)~ T[(wr?, r)(w, r)(wr?, )~ Y(wr, 1)~ ]

[wr, ) (wr?, r)(wr, 1)~ Ywr3, )= 1]

reduces to the word w=(w, r)(wr3,r)~ . There results a null homotopy for f,,
with a trefoil knot in its framed link:

YY)

p=[0w, )w, Y(w, )= (wr, 1)~ 100w, P)(wr, P)(wr, 1)~ (wr?, r) 1]

Lwr2, r)(wr?, r)(wr?, r)(wr3, 1)~ 1]

Further, the word

reduces to the same word w = (w, r)(wr3, r)~ 1. This time the resulting null homotopy
for £, has the unknot with three twists in its framed link:

[OUTVD)

So different products v that reduce to w can lead to null homotopies for fo
with quite different links. Moreover, different reductions to w of the same product
v can produce different links.

The product

v="L[w, )(w, )(w, )" (wr, )= T[(wr, r)(w, r)(r, )~ (w, 1)~ "]

* [(Ws r)(w, I‘)(W, r)— l(wr, r)_l:]

reduces to the word w=(w,r)(wr,r)~! in two different manners to give null
homotopies for f,, with these framed links

(OVOUD) ws (Q VO

The single twist on the cylindrical component of the first homotopy is removed
in the second homotopy, at the expense of introducing a toroidal component
that links non-trivially with the cylindrical component. /

It is possible to reverse this process of constructing a null homotopy for f,
from a product v that reduces to the word w. The framed link Ay in any null
homotopy H for f, not only gives a pairing as in the proof of (3) that shows that
the word w represents a Peiffer identity, but in fact, when molded to be in can-
cellation form, Ay provides a specific reduction to w of a product v of conjugates
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of basic Peiffer elements and their inverses. This gives a geometric proof of (3),
independent of (2).

Hereafter, when w is the reduced word in F(X :R) that represents the Peiffer
identity WeP, we view the framed link Ay of a null homotopy H for f, as a
good representative of the complexity of W, and we call Ay a framed link for the
Peiffer identity W.

4. Geometrically Split Null Homotopies

The asphericity of the 2-dimensional complex K modeled on the presentation
(X :R) is equivalent to the triviality of the homotopy group 7,(K), which we view
as Ker(0: m,(K?, K')>n,(K"). Because 0: F(X:R)— F(X) coincides with
on: F(X:R)—»n,(K? K')->n,(K'), K is aspherical if and only if the group of
identities E=Kerd for (X:R) coincides with the subgroup of Peiffer identities
P=Kern for (X:R). This is precisely the requirement that for each word w in
F(X:R) that represents an identity element WeE, the spherical map f, admits
a null homotopy H. As noted in the previous sections, H has a framed link Ay
that may involve both toroidal and cylindrical components that are possibly
knotted, linked, and twisted.

Each subcomplex M of K is the model of some subpresentation (X':R’) of
(X:R). Form, as in Section 2, the homomorphism ¢':F(X":R)— F(X'), and the
group of identities E'=Kerd’' and the subgroup P'<E’ of Peiffer identities for
(X":R’). Then F(X':R)nE=E' and F(X':R')n P> P'. Clearly, we have

(4) The following are equivalent for a subcomplex Mof an aspherical 2-dimensional
complex K :

(a) M is aspherical,

(b) F(X":R)nP=P,

(c) for each word w in F(X':R') that Fepresents an identity element WeE/,
the spherical map f,, in M admits a null homotopy H in K whose framed link Ay is
free of toroidal links A, for r¢R'.

The simplest way to insure that the condition (4c) holds for each subcomplex
M of K is to consider a complex K which admits a geometrically split null homotopy
for each of its spherical maps. There are the followinig two approaches to this
geometric splitting.

A null homotopy H: (B2 S8')x I -(K?, K') of a spherical map f,, is split by
spheres if there exists a family {S,} of disjoint embedded 2-spheres S, in B*x I
indexed by the cylindrical components L of the framed link Ay such that: (i) S,
meets A in precisely the two end discs of L in B2 x 0, and (ii) S, meets the boundary
of B2x I in just a disc d; in B? x 0 that contains S, " Ay. Then each sphere S,
bounds a 3-ball B, in B?x I that contains the entire cylindrical component L,
and possibly some totoidal components, both of which may be knotted and linked
together.

A null homotopy H is split by discs if there exists a family {D,} of disjoint
embedded 2-discs D, in B2 x I indexed by the cylindrical components L of the
framed link A, such that the boundary curve of D is the union of the index curve
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7L on L with a simple arc J; in B? x 0, and D, has no other intersection with Ay
or the boundary of B? x I. This is a much more restrictive situation. The existence
ofadisc D, implies that the cylindrical component L is unknotted, and the existence
of the family {D,} implies that the cylindrical components do not link with them-
selves nor with the toroidal components.

(5) A spherical map f,, for the word o=[]w;,r)" admits a null homotopy H
that is split by discs if and only if there is a pairing (i, j) of the indices of w and a

family {J; ;} of disjoint simple arcs in B*— | ) B, such that (i) ri=r;, (ii) &= —g¢;,
i1
and (iii) J; ; joins the basepoints of B; and B > and f,(J; ;) represents 1em (K?!).

Proof. When H is split by the discs {D, }, then each simple curve J =D, n(B%x0)
is homotopic over D, to the index curve y, on L. H carries this homotopy in D,
to a null homotopy of f,(J;) in K*. Since the discs {D,} are disjoint, {J,} is a
suitable family of disjoint simple arcs. Conversely, given a suitable pairing (i, j)
and corresponding family {J; ;} of disjoint simple arcs, there is a null homotopy
H for f,, whose levels show each pair of discs B; and B ; moving toward each other
along their simple arc J; ; to eventually cancel out. This null homotopy is split
by a family of discs associated with the given family {J; ;}

Despite the differences in the definitions of splitting by spheres and splitting
by discs, we have the following result.

Theorem 3. The following are equivalent for any (necessaril y aspherical) 2-dimen-
sional complex K :
(i) Every spherical map in K admits a null homotopy which is split by spheres.
(i) Every spherical map in K admits a null homotopy which is split by discs.
And in either case, the null homotopy can be made free of all toroidal components.

For convenience, we first establish the following

Lemma. Let H be a null homotopy with framed link Ay, and let B be an embedded
3-ball in B* x I with boundary sphere S.

(i) If S misses Ay, then H can be modified on B relative to S to eliminate link
components in B.

(ii) If S meets Ay in just two cross-sectional discs D, of some component L of
A, and if re F(X) is not a proper power, then H can be modified on B relative to S
so that B Ay becomes just an unknotted cylinder with some twists.

Proof. (i) Since by hypothesis, H carries S into the 1-dimensional, hence aspherical,
skeleton K! of K, H|S extends over B into K.

(ii) Theloop a= ¢, that represents re F(X)lifts through H to give the boundary
loops &, of the discs D, on S. Let B be any simple arc in S that meets D, in just
the basepoints of &,. The product path &_ B&;‘ B~! is null homotopic in
S—(D_uD,), and so its image under H is a null homotopic path afo~ 1!
in K. It follows that « and B represent commuting elements r and w in the free
group F(X), which must be powers of the same element. But because r is not a
proper, we conclude w=r* and f~a, for some k.

Then H|S extends over an embedded cylinder D>x B! in B with ends
D*x +1=D, by H|(D*xt)=¢,. We use the embedding that makes the spiral
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path that twists k-times around the boundary of the cylinder D x B! lie parallel
to the simple arc f§ in S. Then the homotopy f~a* in K' provides a further exten-
sion of H|S over an embedded disc in B that meets S in the simple arc B and
meets the embedded cylinder D? x B! in the spiral path. The remainder of B is
an open ball whose (singular) boundary is mapped into K'. So again, the aspheri-
city of K! provides the required final extension of H|S over all of B.

Proof of Theorem 3. If a null homotopy H is split by the discs {D,}, then H is
split by the spheres {S,} that bound regular neighborhoods in B x I of the unions
{D,uL}. Conversely, if a null homotopy H is split by the spheres {S,}, then by
the lemma, H can be modified on the balls {B,} they bound so that each B,
becomes free of toroidal components and meets A in just an unknotted cylindrical
component L. Since L simply twists in B, there is an embedded disc D, in B,
spanned by the index curve y, on L and a simple arc J, in the discd, =S, n B x 0.
The family of discs {D,} splits H in the defined manner.

Finally, H can be further modified on a ball B in the complement of the floor
B? x 0 and the balls {B,} to eliminate all remaining toroidal components.

We say that K admits geometrically split null homotopies if the equivalent
conditions of Theorem 3 hold. Then by (4), every subcomplex M of K is aspherical.

5. Aspherical Presentations

A Peiffer exchange involves the replacement of a pair ((w, r)%, (v, 5)°) of consecutive
entries of a word @ in F(X:R) by either (wrtw™'v,s)’, (w,r)?) or ((v,s)’,
(vs~%v~'w,r)). If v is the new word that results from the Peiffer exchange, there

is a homotopy H from f,, to f, with framed link A that involves a single over-

crossing(l---| X |\) or a single undercrossing ( ‘ /\/ “)

A Peiffer deletion involves a deletion of a pair ((w, r)5, (v, 5)°) of consecutive entries
of a word w in F(X:R), provided that the boundary condition wrtw™'vs’v="=1
holds in F(X). This transformation has no homotopy interpretation unless we
assume the following

(6) Relator Conditions: No relator of R is a proper power, nor a conjugate of another
relator or its inverse.

These conditions are necessary for the presentation (X : R) to have anaspherical
model K ([4]). In the presence of (6), the boundary condition wrfw™'vs®v~1=1
implies that r=s,e= —d, and w=0r* for some integer k (since v™'w commutes
with 7, which is not a proper power). Then, if v is the result of the Peiffer deletion
of the pair ((w, r)%, (v, 5)°) in the word w, there is a homotopy H from f, to f, with
framed link A, that involves a cylindrical component with k twists that caps
off the deleted pair. Alternately, the Peiffer deletion factors into a sequence of
Peiffer exchanges, followed by a strict cancellation in which a consecutive pair
((w, 7Y%, (w, 7)) is deleted. (Recall your most recent encounter with a twisted
garden hose.) Strict cancellation corresponds to a homotopy with a framed link

that involves a cap with no twists (I s | m I |)
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A group presentation (X:R) is aspherical (in these sense of Lyndon and
Schupp [9, 11 10]) if every word w in F(X :R) that represents an identity element
WeE reduces to the empty word by a sequence of Peiffer exchanges and Peiffer
deletions. One relator and staggered presentations, planar presentations, and
certain presentations with small cancellation are examples of aspherical presenta-
tions offered by [9].

Theorem 1. The presentation (X :R) is aspherical and satisfies the Relator Condi-
tions (6) if and only if the cellular model K of (X :R) admits a geometrically split
null homotopy for each spherical map into K.

Proof. 1f a word w reduces to the empty word by a sequence of Peiffer exchanges
and deletions, then there corresponds a null homotopy H of f,, built of a stack of
overcrossing, undercrossing, and cancellation cap homotopies. This null homotopy
H has a framed link A, with only cylindrical components that are somewhat
braided. So H is split by the discs {D,}, where D 1 is created by an arc whose ends
slide down the two halves of the index curve A L on the link component L, starting
at the center of the cap homotopy portion of L. Conversely, if for a word w, the
map f, admits a null homotopy H that is split by discs {D.}, these discs show
how H can be molded to look like a stack of overcrossing, undercrossing, and
cancellation cap homotopies. These determine a sequence of Peiffer transforma-
tions that reduce w to the empty word.

6. Construction of Examples

Let A be an abstract framed link in B2 x I whose cylindrical components meet
the boundary in just the floor B%x 0. Assume that the components of A have
been assigned relators from a presentation (X : R), and let A, involve all components
associated with reR.

It is quite easy to deduce conditions on the set of relators R that guarantee
the presence of a Peiffer identity WeP in F(X :R) with this framed link A. Simply
arrange A in B*x I so that there exists levels {0=ty<t;<...<t,=1} between
which the link 4 involves just a single cap n, overcrossing X, undercrossing X, or
cup v. Then work downward. Let w, be the empty word, and suppose that the
level ¢, has already suggested a word w, in F(X:R). If the portion of the link A
between the levels t,_, and t, involves:

(i) a cap that introduces a component of A,, then insert in w, a pair ((w, r),
(w, r)~%) at the appropriate place to form w,_,,

(ii) an overcrossing involving ((w, r), (v, s)?) in wy, then replace them by
(v, 5)°, (vs~%v= 1w, r)’) to form w,_,,

(iii) an undercrossing involving ((w, r)’, (v, 5)°) in w,, then replace them by
(wrtw=1v, s, (w, r)) to form w,_,, and

(iv) a cup involving ((w, ), (v, r)~*) in w,, then delete them to form y_, and
record the cancellation condition: w=v in F(X).

If all the cancellation conditions are satisfied by the presentation (X :R), then
the word w=w, will necessarily represent a Peiffer identity WeP for (X:R)
with framed link A.
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Ve

Fig. 2

For example, the non-geometrically split link A=A, U A, in Fig. 2 leads level
by level to the following words (in which we abbreviate conjugation wrw™~! by r*)

L=t @, wnt (wr
Lt wr ' @) wr)
rtw,r)”t @)t " wr) ()
r~tw,)"t (L, (L) (Lot (wr) ()
rtw,r)"t Lo (L)t @ rwr) (LT (™)
(r~*w,)~' (Lo (Lot )

and to the cancellation condition t=r""w=wrw~'rwr~!. For any presentation
(X:R) in which this condition is satisfied, the last word w=(r="w,r)~'(r~' 1)
-(1,8)=1(r*, r) represents a Peiffer identity We P with the given framed link A.

The simplest example of such a presentation is (x, y: x, yxy~ ' xyx~!). Notice
that the cellular model of this presentation is aspherical, in fact, contractible,
and has all of its subcomplexes aspherical. But this presentation is not aspherical
in the sense of [9], since the word

1

o=x"1y,x) 1 x L yxy txyx= )1, yxy  txyx~ ) Hyxy 1t x)

gives a spherical map f,, for which there is no family of simple arcs as in (5). In
fact, on the cluster C of discs B, and arcs [, 1 <i<4, in B?, the map f,, has the
4

cellular assignments indicated in Fig. 3 and any path in B*— () B, that joins
i=1

basepoints of paired discs deforms relative its endpoints to a cellular path in the
1-skeleton of this cluster C. But no such path can represent the trivial element
1eF(x, y), as is easily seen by consideration of the quotient space of C presented
in Fig. 4. (Incidently, this quotient space of C describes a map S?— K which is
combinatorial in the sense of [7].) By (5) and the proof of Theorem 1, the Peiffer
identity w cannot reduce to the empty word by Peiffer exchanges and deletions.
(Collins informs me that this example is equivalent to one constructed by Chiswell.)
We conclude from this example that
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Fig. 4

(7) Not every aspherical 2-dimensional complex admits geometrically split null
homotopies for all its spherical maps; not every aspherical 2-dimensional complex
is modeled on a presentation that is aspherical in the sense of [9].

Furthermore, the presentation (x,y:x,yxy 'xyx~!) results from the
aspherical presentation (x, y:x, y) by the combinatorial operation (in the sense
of [14]) of replacing the relator y by its product with the conjugate xy~*xyx~!
of the other relator x. So we also see that

(8) The asphericity of a group presentation in the sense of [9] is not a combinatorial
invariant, the existence of geometrically split null homotopies for a 2-dimensional
complex is not an invariant of homotopy-type.

Since there are combinatorial operations that expand any presentation to
include (x, y:x, yxy~!xyx~1), Theorem 2 of the introduction follows.
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aare

Fig. 5

For a second example to illustrate the construction technique of this section,
consider the framed link A =4, U AU 4, in Fig. 5. Here the analysis leads to the
Peiffer identity

o=(xy, (1, s)sxs™ L, s)" (L, t)zx"tz7 txzxz" L ) Yz, ) !

in the presentation (x,y,z:r,s,t) where r=x,s=x"'y " 'zx"'z-'yxy~! and

t=yx~'y~lzzxz~'. This presentation is not aspherical in the sence of [9],
because this word w does not reduce to the empty word by Peiffer transformations.
There are simply no simple paths in the domain of f,, as required by (5). To see
this, consider the quotient space in Fig. 6 for the cluster of discs B; and arcs
l;,1<i<6, in the domain B2 of f,.

As in the first example, the non-aspherical presentation of Example 2 results
from some sequence of combinatorial operations (in the sense of [14]) on the

Fig. 6
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trivial presentation (x, y,z:x, y, z). If one prefers an example which presents a
non-trivial group, it is possible to begin with such a presentation with an aspherical
model (say, a deficiency-one knot presentation) and perform the combinatorial
operations suggested by the cancellation conditions to obtain a non-aspherical
presentation with a non-contractible, though aspherical, model.
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