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1. Introduction

1.1. In [2] quasi-projective dimension (denoted qpd) was introduced as a
homological invariant for groups. It agrees with cohomological dimension
(denoted cd) on all torsion-free groups. According to [1] the inequality
cdG<gd G=<cd G +1 holds between geometric dimension gd and cohomological
dimension for all groups G. Suppose now there is a free cellular G-action on a
contractible n-complex. Then c¢d G <gd G <n. We present here a sufficient con-
dition for a group to have finite qpd in terms of suitable group actions on
acyclic CW-complexes of finite dimension. Moreover, a geometric interpretation
of the Identity Property (cf. 1.2 below) is given in this context.

This note is considered a complement to [2], where groups of finite qpd were
studied by algebraic means alone. Some of the algebraic results of [2] could have
been rederived in the present context. However, in order to keep the exposition
short, we have not done so.

Let R be a commutative ring with unit and let G be a group. Recall from [2]
that an exact sequence of RG-modules

2:0-0®P—P,_,—..»PB—>A4—-0

is called an RG-quasi-projective resolution of A if all the P, 0<i<n are RG-
projective and either =0 and Q =0, or n>0 and Q=@ RG/G, is a permutation

1
module. We say that qpdz G=k= o0 if k is the minimal length of all RG-quasi-
projective resolutions of the RG-module R with trivial G-action. We write qpd G
for qpd, G.
As shown in [2], the subgroups G, occurring in any RG-quasi-projective
resolution of finite length are finite.

1.2. Our results are based on the following definition. We consider a cellular
action of a group G on a CW-complex X. Such an action is called m-free if it
restricts to a free action on the m-skeleton X™ of X.
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Note that if G acts m-freely on a CW-complex X and e is a k-cell of X, k>0,
then the stabilizer G, of e acts m-freely on the smallest subcomplex X, of X
containing e. Since X, is finite, and G, acts faithfully by freely permuting the
cells of the m-skeleton of X, the group G, is finite. In particular, if G is torsion-
free, then any m-free G-action is free.

In order to state the first result, we need to look more closely at the group
actions which can occur. Suppose the group G acts cellularly on the CW-
complex X, and the element g of G maps the n-cell e to itself (n>0). Then g
induces a self-homeomorphism g of the interior of e, which we may regard as an
open n-disk. We say that g inverts e if g is orientation-reversing. We say that G
acts without inversion on X if no element of G inverts an n-cell of X for any
nzx1.

Clearly G acts without inversion on X if G acts freely on X, or if G has finite
stabilizers and has no 2-torsion.

Theorem 1. Suppose G is a group which acts (m—1)-freely on the R-acyclic m-
complex X.

(a) If G acts without inversion, then qpdg G <m.

(b) If R=Z, and some m-cell is inverted under the G-action, then m is odd and
qpdG=m+1.

We define the Identity Property for a presentation of a group such that it is
equivalent to condition .1 of Proposition 10.2 in [3, p. 158].

Definition. A presentation (U|R) of a group G has the Identity Property if the
following conditions are satisfied.

(i) The relation module is isomorphic to @ C,, where C, is the cyclic ZG-
reR

submodule generated by the image in the relation module of the relator r.

(ii) There is an isomorphism C,~ZG/G,, where G, is the image in G of the
centralizer of r in the free group F(U).

A group G has the Identity Property if some presentation of G has the
Identity Property.

It is obvious from this definition that for any group G satisfying the Identity
Property, the inequality qpd G <2 holds.

Theorem 2. A group G satisfies the Identity Property if and only if there exists a
1-free G-action on some contractible 2-complex.

Corollary. The group G has geometric dimension at most 2 if and only if G is
torsion-free and has the Identity Property.

These results confirm that the Identity Property for G is a priori stronger
than the property qpd G<2. In the case of torsion-free groups, the converse
implication is the Eilenberg-Ganea problem; it amounts to showing that cd G
=2 implies gd G =2.

Another related property is for G to be “aspherical” in the sense of Lyndon
and Schupp [3]. By [3, p. 158, Prop. 10.2], any “aspherical” group satisfies the
Identity Property.

1.3. In section 3 we apply Theorem 1 to find a set of new examples of groups of
finite qpd. Rather than constructing quasi-projective resolutions of finite length,
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we verify that the groups considered act (n—1)-freely on some Euclidian or
hyperbolic n-space. The criterion easily applies to discrete groups of motions of
some planar tesselation. The group actions on hyperbolic n-space (n>2) de-
scribed in [5] are not (n—1)-free for obvious reasons, but we have not been able
to decide whether some restriction to a subgroup (with non-trivial torsion) yields
a new example of an (n— 1)-free action.

We would like to thank C.T.C.Wall for commenting on a preliminary
version of this paper. His suggestion enabled us to improve Theorem 2. We have
also benefitted from conversations with G. Mislin.

Both authors have enjoyed working at the Forschungsinstitut fiir Mathe-
matik der ETH. We gratefully acknowledge this opportunity and would like to
thank Prof. B. Eckmann. The first named author was supported by a European
Science Exchange fellowship from the Royal Society of London.

2. Proofs

Proof of Theorem 1. (a) The cellular chain complex of X gives rise to a sequence
of ZG-modules

€ 0->-M—->C, ,—>..>C,—>Z—0

in which the C; are free, and M is a permutation module. Since X is R-acyclic,
the sequence RQR)¥ is exact, and so is an RG-quasi-projective resolution for R.
y/A

(b) Suppose now that R=Z, and G does not act without inversion on X. We
claim:

(1) nis odd;

(2) any non-trivial element of the stabilizer in G of the n-cell e of X inverts e;

(3) the stabilizer in G of any n-cell of X has order at most 2.

Some element g of G inverts some n-cell e of X. Let S denote the cyclic
subgroup generated by g. Then, regarded as a ZS-module, M has a direct
summand Z, the ZS-module with underlying abelian group Z and non-trivial S-
action. Now consider ¢ as a sequence of ZS-modules. Using Schanuel’s Lemma,
and comparing M with the n’th kernel in a ZS-free resolution of the form

o ZS-0 78 2SR S T 0,
we conclude that n is odd, establishing (1).

To prove (2), suppose some h in G fixes an n-cell e of X, but does not invert
e. Let T denote the cyclic subgroup of G generated by h. Then there is a ZT-
module isomorphism M =M, ®Z, where T acts trivially on Z. Since n is odd
and T is cyclic, we have

0=H,, (T;Z)=Tor{"(M;Z)=Tor{" (M ;Z)® H,(T; Z).

Hence T~H,(T,Z) is trivial, which establishes (2). Claim (3) follows im-
mediately from (2).
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It now follows that M has a decomposition as a ZG-module in the form

M=F®(@®ZGRg Z,)
1

where F is ZG-free, each S, is a subgroup of order 2 in G, and Z, is the abelian
group Z with non-trivial S, -action.

We can now extend % to a ZG-quasi-projective resolution of Z of length
n+1 by splicing on the exact sequence

0— @ ZG ®, Z—F &(@ ZG)— M —0.
/§ I

This completes the proof of Theorem 1.

Proof of Theorem 2. Suppose G has a presentation (U|R) which satisfies the
Identity Property. We construct a CW-complex X which may be thought of as a
geometrical realization of the combinatorial Cayley Complex [3, p. 123]. We
first form the 2-complex Y associated to the presentation <U|R)>. Thus YV is a
wedge of circles with n,(Y'")=F(U), and we make the following convention for
the attaching maps of 2-cells in Y. If reR has the form s™, where m>1 and s is
not a proper power in F(U), choose a map a’, S' - Y") in the homotopy class s,
and define a: S' - Y" by a(z)=a'(z™). Then a is in the homotopy class r, and we
use a to attach the 2-cell corresponding to r.

Now let ¥ be the universal covering of Y. Call two 2-cells of ¥ equivalent if
their attaching maps are homotopic in Y. It follows from the Identity
Property that, for every 2-cell e of Y, there is a finite cyclic subgroup G, of G
which regularly permutes the equivalence class containing e. Choose a repre-
sentative set E of the G-orbits of 2-cells of Y, and for each e in E a left
transversal T, of G, in G. Now let X be the subcomplex of Y consisting of ¥*),
together with the 2-cells {t(e); e€E, teT,}.

Clearly G maps equivalent 2-cells to equivalent 2-cells. Hence X contains
precisely one 2-cell from each equivalence class, and so is simply connected.
From the Identity Property for (U|R), it follows that X is acyclic. Hence X is
contractible.

The action of the finite cyclic group G, on the unit disc by rotations defines
an action of G, on the interior of e. By the particular choice of attaching maps in
Y, this extends to an action on Y"’Ue which restricts to the natural G,-action
on Y. For teT,, the automorphism of ¥ determined by ¢ restricts to a
homeomorphism YV'Ue— Y Ut(e). Piecing these homeomorphisms together,
we extend the natural free G-action on Y") to a 1-free action on X.

Conversely, suppose G acts 1-freely on the contractible 2-complex X. Since G
acts freely on the graph X", we may form the quotient graph Y =G~ X"\, Let
p: XY denote the quotient map, fix a O-cell v of X as a base-point, and
define N =n (X", v), F=m,(Y,p(v)). Then the homotopy exact sequence of p has
the form

s -2 i, i,
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An explicit set of defining relators in F for a presentation of G is given as
follows. Choose a representative 2-cell e of X from each G-orbit [¢]. Choose a
closed path a,, based at v, representing the free homotopy class of the attaching
map of e. Now define r,, to be the element of F represented by the closed path
p(a,) in Y. The element ry,, is well-defined up to conjugacy in F.

Now let R denote the set of all r,, as [e] runs through the set of G-orbits of
2-cells of X. Since X is contractible, it follows that R generates p (N) as a
normal subgroup of F, so that R is a set of defining relators for a presentation of
G. The Identity Property for this presentation is equivalent to the property that
the stabilizer in G of any representative 2-cell e is the image under d of the
centralizer in F of r,.

If g(e) =e, then g(a,) and a, represent the same free homotopy class of maps
S'— X, Hence, for a suitably chosen path x in X" from v to g(v), the paths
x-g(a,)-x~ "' and a, represent the same element of N. If f is the element of F
represented by the closed path p(x) in Y, then f commutes with r,,, and d(f)=g.
Conversely, if feF commutes with r,, then d(f)(a,) and a, represent the same
free homotopy class and, since X is contractible, it follows that d(f)(e)=e.

3. Examples

Suppose (M, T) is a triangulated n-manifold without boundary. If a group G acts
on M in such a way that T is G-invariant and for all g+ 1 in G, the only fixed
points of the associated map g: M— M are vertices of T, then the G-action
induced on the dual complex T* is (n — 1)-free. In particular, if M is contractible,
then qpd G =n+1.

This criterion covers all the examples below.

3.1. Suppose A is an order in some n-dimensional Q-algebra 4. Let F be a finite
subgroup of the group of units of A. The group F acts on the abelian group A by
left multiplication, and for f#1 in F, the action of f has no fixed point in A
except 0, provided (1—f) is not a zero-divisor in A (in partiular, if 4 is a
division-algebra). If we regard A as Q"< IR", then the F-action on A extends to a
linear representation of F, p: F—GL(n,IR). Now the semidirect product AJF
acts on R" by affine transformations: (4, f)x =4+ p(f)(x) (€A, feF,xeR"). It is
possible to construct a cellular subdivision C of IR"” with convex cells, such that
C is preserved by the action of AJF. and any fixed point of any (4.f)#(0.1) in
AJ]F is a vertex of C. Hence the action of AJF on the dual C* is (n—1)-free,
and qpd(AJF)<n+1.

Particular examples for F and A are the following:

(a) F=Z/2Z as the group of units of A=ZcQ.

(b) Form>2, F=7Z/mZ as a group of units of A=Z[exp2ni/m], in the ¢(m)-
dimensional Q-algebra A =Q [exp2ni/m], where ¢ is the Euler function.

(c) The quaternion group F as the group of units of A=Z[i,j]<@Q[i,j] in
the quaternions IH.
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(d) The binary tetrahedral group F as the group of units of
A=Z[i,5(1+i+j+k]<=Q[i,jlcH.

Note that if a subgroup F of the units of A has the property that for f+1 in
F, (1—f) is not a zero-divisor in A, then for any positive integer r, the diagonal
embedding of F in the units of A" has the same property. Hence qpd (A" JF)<rn
+1.

3.2. A Fuchsian group G is a discrete group of orientation-preserving isometries
of the hyperbolic plane, which preserves some hyperbolic tessellation T with the
property that the only fixed points of this action are vertices of T. It follows that
G has the Identity Property. Fuchsian groups have been investigated by many
authors, and their properties are well-known [4, 6].

A case of particular interest is the triangle group

G=T(,mn)=<{a,bla' =b"=(ab)'=1) (1/1+1/m+1/n<1),

because G is an infinite group generated by two torsion elements, but is not a
free product of cyclic groups. Thus, for example, G cannot be embedded in a 1-
relator group.
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