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1. Introduction

Let L; denote the usual Banach space of equivalence classes of real valued
integrable functions on a o-finite measure space (X,%u) and let L}
={feL,|f =20} be its positive cone. As it is customary, we shall not distinguish
between the equivalence classes of functions and the individual functions.

By a process F we mean a family F={F}={F},.,, indexed with the positive
real numbers t€(0, 00), such that FeL, for each t>0. A process is called positive
if FeLy (t>0), nondecreasing if F,<F, (0<t<s) and strongly continuous if
|F,—F|, >0 as t—>s>0.

Let T={T}={T},., be a strongly continuous semigroup of positive con-
tractions in L;; this means that the T are linear operators in L, of norm not
exceeding 1 such that ;LY <Ly, ,T,=T,, (t,5>0), and such that Tf ={T, f} is
a strongly continuous process for each feL,. A process F={F} is called an
additive ('superadditive) process (with respect to {T;}) if F,+ T,F,=(<)F,,  for all
t,s>0. Interesting examples of additive processes are processes of the form F

t
=[T,fds (feL,) and processes of the form F,=(I — T)) f, where I is the identity
0

operator.

We study the convergence a.e. of t=!' F, as t »0+0. As this is meaningless,
when the F, denote equivalence classes and ¢ ranges through all positive reals, we
either have to select suitable representatives or we let t range through a

countable set only. We shall say that g-lim f, exists a.e. if the limit exists a.e.,
t—0

when t approaches zero taking only strictly positive rational values. Under the
assumptions of our results it will always be possible to select representatives of
t~'F, in such a way that for fixed xe X (¢t~ ' F)(x) has bounded variation in every

finite interval. Therefore, the existence of g-lim (¢t~ 'F)(x) will be equivalent to
t—0

*  This work has been done during a visit of the first author at the University of Gottingen.
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the existence of lim(t~' F)(x) when t>0 approaches zero through all positive
reals. =0

The principal difficulties appear already in Sect. 2, where positive additive
processes are discussed. This is combined with a decomposition theorem in
Sect. 3 to prove the convergence a.c. of t~ ' F, for additive processes satisfying

sup ||t~ 'E|, <oo. This contains the local ergodic theorems of Krengel-Orn-
O0<t=s1l

stein [6], Akcoglu-Chacon [1], and Ornstein [8] as well as the Lebesgue-
differentiation theorem for functions with bounded variation. The norm-con-
vergence of t~'(I—T,) f is usually studied in the analytical theory of semigroups
in connection with infinitesimal generators and it seems of interest that a.c.-
convergence holds under the above conditions. Another interesting application
of the decomposition theorem is Theorem 3.3 which implies that a measurable
function f: R — R is a.e. (with respect to Lebesgue-measure) equal to a function
of bounded variation if and only if lim ¢~ [ | f(x +1) —f(x)|dx is finite. Section 4
treats superadditive processes. 6=+0

The proofs in Sect. 2 make use of ideas of Akcoglu-Chacon [1]. The function
¥, appearing there has been inspired by Brunel's lemma. In Sect. 4, ideas of
Kingman [5], and of Akcoglu-Sucheston [2] have influenced the arguments.

A refinement of the arguments of this paper can be used to derive a
differentiation theorem for additive processes and semigroups of positive linear
operators in L, (1=p <) generalising the local ergodic theorem of Kubokawa
[7]. As this is considerably more complicated and the present methods are
interesting in their own right, this will be discussed in a subsequent paper.

2. Positive Additive Processes

A function F: (0, 00) x X > R is called a representative for the process F={F} if
F is measurable with respect to the product-g-algebra coming from the Lebes-
gue-measurable sets in (0, 0) and # in X, and if for each fixed ¢ >0 the function
F(t,): X >R is a representative function for the equivalence class FeL,. It is
well known (and easy to see) that every strongly continuous process has a
representative. A representative for a positive and therefore nondecreasing
process is called a regular representative if 0<F(t,x)<F(s,x) whenever 0<t<s
and xeX. It is easy to see that every strongly continuous positive process has a
regular representative. Note that an additive process F with ||F,|; =0 (s—0) is
necessarily strongly continuous.
The main result of this section is the following theorem.

(2.1) Theorem. If F is a regular representative for a positive additive process with

1 ~
|E|; =0 (s—0+0), then lim ?F(t, x) exists for a.e. xeX.
0<t—0

This theorem is equivalent to the following one.
(2.2) Theorem. If F is a positive additive process and |F,||; >0 (s—0+0), then

.1
g-lim —F exists a.e.
-0 [



A Differentiation Theorem for Additive Processes 201

To sce this equivalence it is enough to observe that if ¢(f) is a monotone

. . . 1 . . .
function then the existence of lim —¢(t) is equivalent to the existence of
0<t—0

1
q-lim — @ (1).
(-0 I
The proof of Theorem (2.2) will be obtained after several lemmas. In this
section F will always be a positive additive process with |[F,[, >0 as s—»0+0.

(2.3) Definition of Wg(F). For each t>0 let 2(F)<L{ consist exactly of those
SfeLi for which there exists an r>0 and an integer n=0 and f,, fi, ..., f,€ L} such
k

o o 1

that (n+1)r<t, f=fo+f; +---+f, and such that } T,“*'j,ng;F, for all k
i=0
=0,1,...,n. We then let l1”(1’)—sup{fj'dulfe]’(F)} and Y;(F)= lim WL(F).
t—-0+4+0
Here E€%, and the existence of the last limit follows from the obvious fact that
0= YL(F) S Wi(F) whenever 0<t=<s. Note that if «=0 then Y («F)=0o¥.(F),
where aF = {aF}

(2.4) Definitions of S, and R". Let feL{. Then Tf={T,f} is a strongly con-

tinuous positive process and S, f= j T, fda exists for each t>0, defined as the

m—1
- . t
strong limit of RV f= 5 —
i—o m
is a positive additive process. If Tf is a positive representative for the process Tf
1

de the integer m— oc. The process Sf ={S, f}

I/m

then (S /) (1, x):j (Tf)(a, x)do defines a regular representative for Sf.
0

(2.5) Properties of T and S. Let h'eL, with h">0 a.e. and let h=S, h". Then

.1 .
{S,h} is a positive additive process and also g¢-lim -r-S,Iz=h ae. If C is the
-0

support of h then S,h>0 on C for all t>0. If D=X —C then T,f=0 on D for
each t >0 and for each feL,. From this it follows that if F is an additive process

. .1 :
then ;=0 on D for each t>0. Hence the existence of g-lim ?E ae. on D is
-0

trivial. The proofs of these facts are not too difficult; see [1] and [6] for more
details.

For each real number >0 let Q(t) be the set of rational numbers r such that
O<r<t. If geL, then, for example, {g>0} will denote the set on which (a
representative of) g is strictly positive.

(2.6) Lemma. If fe2(F) then S,f <F,, , for each t>0.

1
Proof. Let f=fy+---+f, with ZT" ‘f<T" E for k=0,1,...,n and
(n+1)r<s. First we note that =10

t+nr 1 l+n71

jT Fda—j F,,,—F)dux

o

ll+(n+l)r t+nr lt+(n:}~l)r
= Fdoz—f j Fdas- | Fdag

r r t+nr

=F

l+(n+|)r— t+s*
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Now we also have that

t+nr

1
| T,-Fda
0 r

n—1(k+1)r t+nr 1
= z j T,-F,do+ j T,—F.do
k=0 kr r r
n—1r 1 1
=¥ j?;(T,.LE) da+jTa(T,"—F,) d
k=00 r r
n—-1r t n
>ZjTZT" ifida+ [T, Z " f,do
k=00 i=0 0 i=0
n t+(n—ir n t
=Y | Tfidez X [Lhide=E)
i—0 0 i=00

These two results together give the desired inequality.
(2.7) Lemma. Let F be a positive additive process and let geL}. If sup (F,
—S,8)>00n EEZ then ‘P'"(F)>jgd,u 1€Q(t0)

Proof. Let v=g-u and let £¢>0 be given. We can find finitely many t;€Q(t,),
1<i<n, and an a>0 such that, if

E,=En{F, —S§, g>u}

i=1
u(A)< 8, AeF. Choose an integer M such that |R'g—S, gll, <o for all m=M
and for all i=1,...,n. Therefore, if

then v( UE) e. Let 6>0 be a number such that v(A)<§ whenever

E(m)=E;n{F,— R g>0}

then v(E,— E|(m)) <§ for all m= M.

We now find an r>0 such that m,=t;/r is an integer with m;=M for each i

.,n. Then
F, —-Ryg=F,,—R..,8
m,— 1 mi—1
= Z TIFE— ) rTig
. o

m,—1
=r Z T’( F— g)>0

on Ej(m;). Hence, letting E'= U E)(m) and K=max(m,...,m,), we have that
Kr<t,,v(E—E')<2¢ and that
k—1

(1
sup Y, T,’(;F,—g)>0 on E'

0<k=K j=0
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|
We now apply the Chacon-Ornstein filling scheme [4,Lemma 1] (with ;Fr

instead of f* and g instead off‘) to obtain functions d,...,dy_, such that

k
Pt
and such that d:=d,+---+dy_, =g on E'. Since deZ, (F) this shows that
Y(F)2[dduz [ddu=[gduz[gdu—2e
E E’ E’ E

lF for all k=0,...,. K—1,

'

II/\
~

and completes the proof.

(2.8) Lemma. Let F and G be two positive additive processes and assume that

sup (F,—G,)>0 on a set E with u(E)<oo. Then for each £>0 there exists a set
teQ(to)
E'<E and a number 6>0 such that u(E—E')<e and such that

sup (F,—S,8)>0 on E for all geZ(G).
teQ(to)

Proof. We find finitely many t,€Q(t), 1 £i<n, and an a>0 such that if

E,;=En{F, -G, >a}

thenu( UE)<-

i=1
Since G is strongly continuous and G, . decreases to G, when seQ(t,)
decreases to zero there exists a >0 such that the sets B;={G, ,,—G, >a} have

measure u(B,-)<2i(i= 1,...,n). Now, if geZ;(G), then, by Lemma 2.6
n

Ft,—Sr,ggFr,_Gt +6 (F G) (Gr +0 Gt.)>0

on E\B,. Therefore E'= U (E\B;) has the desired property.
(2.9) Lemma. Let F and G be two positive additive processes and assume that

sup (F,—G,)>0 on E for all t,>0. Assume that u(E)<oco. Then, for each £¢>0
teQ(to)
there exists a set E'cE such that wW(E—E')<e¢ and such that ¥.(F)2 ¥..(G)

whenever E'e# and E' cE'.

Proof. We choose ¢>0 with ) ¢ <e and also ;>0 with ¢;|0. The previous
i=1

Lemma shows that for each i we can find a set E;c E and a number ;>0 such
that U(E —E;)<¢g; and such that sup (F,—S, g)>0 on E; for all geZ;, (G) Let E'

1eQ(t,)
= ﬂ E,. Then u(E—E)<e.
Let E'"cE be a fixed set. Given an n>0 we find an i such that

¥ (F) < ¥ (F)+n. Hence, if geZ; (G) then, by Lemma (2.8), ¥g.(F)= j gdu and
consequently Y. (F)+ 1= ¥24(G).
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(2.10) Lemma. If h=S, h' us defined is in (2.5), then Y (Shy=[hdp.
E

1
Proof. For any O<s<t<l one has hy:={ T, hWdac?(Sh) because of
t s
h,<t=!' [ T,hdo. Hence Wi (Sh)yzlim [ hydpu=[hdy for all t>0.
0 s=0E E

(2.11) Lemma. If F is a positive additive process then, with the notations of (2.5),

E
-lim =% exists a.e. on C.
qg_.o Srh

Proof. If this limit does not exist a.e. on C then there is a set Ec C with
0<u(E)< oo and two numbers o, f with 0=<a < f such that

E
g-liminf —-<a<p<g-limsup —— on E.

t—0 Sth t—0 Slh

Therefore, sup (FE—fS,h)>0o0nE and sup («S,h—F)>0on E for each t,>0.
teQ (to) teQ(to)
Then, using Lemma (2.9), we can find a set E"cE such that 0O<u(E") and

¥, (F)= ¥ (BSh)=B ¥g.(Sh) and o ¥p. (Sh)=¥g (aSh)= ¥...(F). This implies

that o ¥..(Sh)=p ¥g.(Sh), which is a contradiction, since a<f and

0<[hdus¥p.(Sh) = fhdu<oo. The proof of Theorem (2.2) now follows di-
E X

rectly from Lemma (2.11) and from the observations in (2.5).

3. Decomposition of an Additive Process

Let {T;},., be a strongly continuous semigroup of positive linear operators in

L, with sup ||T;||, <oo. We now consider general additive processes F ={F},. o
O<t=1

satisfying

(31) sup [ E|,<oo.

0<t=1

It is easy to see that the additivity and (3.1) together imply the strong continuity
of F. :

Note that (3.1) is a consequence of the additivity if F is positive and {T},. ¢
is Markovian, ie. |T,f[l,=|fll; for all feLj.

(3.2) Theorem. If {T,} and F are as above there exist two positive additive
processes {F,®}, . o with the properties (3.1) such that F,=F"—F.

k k
Proof. For t=k-27" put E"V=Y Tj .(F,-.)" and F"?= Y, Ti-ulFo-n)
j=0 j=0
From (Fz-n)+=(F2-(,.+1)+’1;—("+1)F2-(,.+1))+_§F2+-(n+1)+TZ-(,.+1)F2+V(,.+1) it fol-
lows that F™ D < Fr+ 11, For dyadic rationals ¢ F/")= lim F™ " exists in L, and

m— oo

a.e. and F? is defined in the same way. The additivity and the property (3.1) can



A Differentiation Theorem for Additive Processes 205

be verified in a straightforward way for dyadic rationals t,s. By the strong
continuity we can define F”=1im F” for all t>0 where s ranges through the

s—t

dyadic rationals, and then the desired properties follow in general by continuity.

If for some feL,F,=S,f, (3.1) is an easy consequence of the strong con-
tinuity of {T;}, .. If in this case {T;}, ., is even strongly continuous at 0 and T,
t

is the identity one easily shows that F'"' =T, f* do. In general only < would
be true. Y

It is much less obvious that the above decomposition essentially also gives
the decomposition of a function of bounded variation into a difference of two
monotone functions —except that above we have dealt with equivalence classes
of functions. Actually, condition (3.1) in this case leads to a simple necessary and
sufficient condition for a measurable function f: R >R to be a.e. equal to a
function of bounded variation. This application of the above decomposition
theorem seems of independent interest.

For a measurable f: R — R we define F, on IR (with Lebesgue-measure 1) by
F(x)=f(x+1t)—f(x). This is additive when T, denotes the translation operator
(T.f)(x)=f(x+1). T, is a contraction in L, and for contractions the supremum
in (3.1) is a limit (as t »0+0) because the additivity implies |F,, ||, <|Fll,
+ [|F[;- We define the essential total variation || /..., of f by

+5

1
||f”ess.l.vA= lim _f |f(x+[) _f(x)l dx.
t-0+01

The total variation of f is denoted by || f|,.. Call f; equivalent to f, if f,—f, is
constant and A-equivalent if f,— f, is constant modA. || - |, , is a norm in a space
of equivalence-classes and || - || a norm in a space of A-equivalence classes.

ess.t.v.

(3.3) Theorem. If f: R — R is measurable and ' = f A-a.e.,then || f || osos. <11/ |+ -
There exists an f'=f A-a.e. with || f| e = I1.f Il o -

Proof. As the essential total variation is not changed, when f is changed on a -
nullset we may assume f=f" and || f|,, <oo for the proof of the first statement.
As f has a representation f=u—v as the difference of two increasing functions
wv with || f 1, =lul,, +lvl,, it suffices to prove [ull,,, < [ul,.. But for
increasing functions the essential total variation coincides with the total va-
riation because

b
%j.|u(x+t)—u(x)|dx: lim %j(u(x+t)—u(x))dx
bmra

1b+r 1a+t
= lim {? | u(x)dx—; | u(x)dx}
a— — oo b a
b— 4+

=supu(x)—infu(x)= [ul,,.
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To prove the second statement we use the decomposition F,=F"—FE? de-
scribed in Theorem 3.1. It is easy to check that

I\f\less_t.v?}iﬂ; lle™ 1F,‘”|l1+}ing le= ' E2,

The essential step of the proof is the following lemma:

(3.4) Lemma. If F={F} is a positive additive process on (R, 2) satisfying (3.1) for
the translations T, there exists an increasing u: R —R™* such that for all t>0 the
equation F(x)=u(t +x)—u(x) holds A-a.e.; u is determined uniquely mod Aup to an
additive constant.

Proof. Note that this lemma would be very simple if we dealt with actual
functions F, instead of equivalence classes and F,, ,=F+T,F, would hold
everywhere. Then u(t)=F,(0) would do.

For any j=0 we define

W)=Y Fy(x—ks™)
k=1

The sums converge a.e. since for any interval J of the form
J=[r275,(r+ )27 (reZ)|u?- 1|, Z|IF,-,|, <.
The equation
F, ,(x)=u?(x+i27)—u?(x) (ae.)

follows for i=1 from the definition of ) and for general i by induction using
the additivity. Again, using the additivity, we see that

Fy-(x—k2= ) =F, s n(x—2k27 D)+ F, . y(x —(2k+1)276+ 1)
which implies that all u? are equal to u'” J-a.e. It follows that
(3.5) E(x)=uP(x+1)—uV(x) i-ae.

holds for dyadic rationals t. As F, converges to F, (t —s) and u'" restricted to any
finite interval is integrable (so that the restriction of T,u'" converges to that of
T,u'V), (3.5) follows for all t>0. Because of (3.5) and F, 20 the sequences

2-n

2" [ uV(x+a)da
0

are decreasing and converge for all x to a function u(x) which is increasing. It
coincides a.e. with u'V. This proves the desired representation.

Now assume that u' is another increasing function with F(x)=u'(x+1)
—u/(x) i-a.e. Then w=u—u' has the property TTw=w A-a.c. for all t. It follows
easily from the Lebesgue-density theorem that w must be a.e. constant.

Now we apply Lemma3.4 to (F"),t>0) and (F®,t>0) and find increasing
functions uy,u, with FOx)=u(x+t)—u(x) A-ae Clearly [u]escv.
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=lim |t~ "FEY| . It follows that f'=u, —u, is a function of bounded variation
t—0

with || /7l S fllessav.- For all t>0 T, —f'=F,=T,f—f J-ae. It follows as
above that f'=f A-a.e. up to an additive constant and we may assume that this
constant is zero by changing u,.

The above proof also shows that the decomposition in Theorem 3.2 corre-
sponds exactly to the decomposition of f” into a difference u, —u, of two

increasing functions with [ju, ||, , + [u,l, =lf'll.,.. In particular llm;f(f(x+t)
t—0

—f(x))*dx is the “essential positive variation”. It may be of interest to note the
following corollary:

(3.6) Corollary. A measurable f is i-a.e. equal to a constant if and only if
|

lim ?j |f(x+1t)=f(x)|dx=0; it is l-a.e. equal to an increasing function if and only

t—0

if
llm ff(x+t) f(x))~ dx=0.

The principal application of Theorem 3.2 is the following differentiation
theorem for non-positive additive processes.

(3.7) Theorem. Let {1}, , be a strongly continuous semigroup of positive
contractions in L, and F an additive process satisfying (3.1), then g-limt~ ' F, exists
for ae. xeX. £

Again, an equivalent version of the result can be stated using representatives:
By Theorem (3.2) and the existence of regular representatives for positive
additive strongly continuous processes an additive process F satisfying (3.1)
always admits a representative F: (0, c0) x X = R such that F(-,x) has bounded
variation in every finite interval for all x. For such a representative

lim ¢! F(t, x) exists a.e.
t-0+0

Theorem 3.7 contains the Lebesgue differentiation theorem and the local
ergodic theorems of Krengel-Ornstein, Akcoglu-Chacon, and Ornstein. We
remark that Ornstein [8] has stated his result (Theorem 3, p. 109) for processes of the

t

form F,= | f, do with (T, f,=/, . ) assuming only || f,||, <1, but the proof seems to
0

use also f,=0.

(3.8) Identification of the limit in the local ergodic theorem: It may be of interest
to add a few words on the identification of the limit of t='S,f. In the “initially
dissipative part” D the limit is zero. Now assume that X coincides with the

“initially conservative part” C. If h is defined as in (2.5) we have limt~ 'S, h=h.
t—0

Akcoglu and Chacon [1] have proved that T, f: —11m t='S, f defines a positive

contraction such that {T},., is now defined a]so for t=0 and also strongly
continuous at t=0. If we use v=h-p as the reference measure instead of u the
semigroup {T}},,, corresponds to a new semigroup {7;'} in L,(v) defined by

T/g=h""'T(h-g) geL,(v).
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This new semigroup has the property Tgl=1. By a theorem of Ando [3] a

positive contraction in L,(v) with Tg1=1 and (Ty)*=T, is a conditional expec-

tation operator. Call Ae.# initially invariant if Tg1,=1,. The initially invariant

sets form a o-algebra ¢ =% and we have Tyg=E (gl.#). It is not hard to show

that A is initially invariant if and only if there is some feL¥(p) such that { f>0}

=A and jT,fdu — | fIl,. This characterization has the advantage of being
A

independent of the new reference measure v. We may say that using a suitable
reference measure (invariant under T,) the identification of the limit in the local
ergodic theorem is given by a conditional expectation —just like in Birkhoff’s
theorem.

There does not seem to be any canonical description of the influence of the
initially dissipative part. In fact, if we assume h=1. for simplicity, the map
f-limt~'S,f from L,(D)={feL,|f=0 in C} to L,(C) can be any positive

t—0

contraction U, with UyL,(D)=L,(C, #,v).

4. Superadditive Processes

Recall that a process F is called superadditive (with respect to T={T}) if F,
+TF,<F,, for all t,s>0. Note that F is not assumed to be strongly con-
tinuous. We shall, however, assume that there exists a t,>0 such that

1 . . . .
sup - |Ell, =K <o, in order to prove a differentiation theorem for F. (If F is
O0<t=to

additive, this is equivalent to (3.1).) Also, the semi-group T= {T;} will be assumed
to be Markovian; i.e. that [ T, fdu={ fdpu for each t>0 and f€L,, in addition to
the previous strong continuity and positivity conditions. Under these assump-
. .1
tions, note that [Fdu+[F,du<{F du, which shows that a= lim ;jF,du
0<t—0
exists and is finite. From now on F={F}, K, t,, and « will be as defined above

! . .
and we shall show that q-llm;F, exists a.e. First we observe that we may
-0

assume that 0<F and a=0:
1
(4.1) Lemma. There is an additive process G such that GEF, sup?HG,llléK
t>0 L

1
and such that ?jG, du=uo for each t>0.

Proof. Let B be the set of strictly positive binary rational numbers. If te B with
k—1
t=k2-" we let, as in the proof of Theorem (3.2), G!= Y T;-.F,-.. Then

=0
G'=G"+!, since F, w2 F,-eny+ Tp-tmety Fp-men, and alsoij;'d,u=kszA,.du
=t2"[F,-.dp=—K if 27"<t,. This shows that G converges in L, to a
function G,, as n — 00, and also that jG,du=tfx, for each teB. If t,seB and if n is
sufficiently large we see that |G!—G7||, <K|t—s| and that G/+T,G;=G],.
Hence the same is also true for G. Therefore it is clear that G, can be defined for

all real numbers ¢ >0, and that G satisfies the required conditions.
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(42) Lemma. Let F be a positive superadditiue process with respect to a

Markovian semi-group T and assume that lim deu 0. Then q hm : F 0
0<t—-0
a.e.

Proof. Given ¢>0 we fix a ¢, such that [F, du<et, and define a process H

to

1
={H,} as H,=(I — deH— jT F, ds for each t>0. I again denotes the

to

identity operator. Note that there is no difficulty with the definition of [F ds as

the strong limit of Riemann sums, since F is a non-decreasing posmve process.
Now it is clear that H is an additive process and also that [H,du

1 : t

=t—jd;t§ T.F, ds<et. We now show that H,> (1 _t_) F, for eacht, 0<t<t,. In
0" 0 0

fact,

to to

t H-‘Fds jTFds-l—fTF, ds

t 1o

=] _ds+j(FY—T,FH)de(TSED—T )ds

to—t+s
0 t

> des+jTF (ds=(to—1)F,

O'-—-A~

Hence H, =0 if 0<t<t,, and consequently H,=0 for all t>0, because of the
1 .
additivity. Therefore q-lim~H =h ae and [hdp<e This shows that

1 1
g-lim sup F,<h has an arbltrarlly small integral and therefore g- llmt =0 ae.
t—0 t—0

Combmmg these two lemmas we have

(4.3) Theorem. If {F} is a superadditive process with respect to a Markovian

. . , 1
semi-group {T,} and if there is a t,>0 such that sup ||F|! < oo then g-lim-F,
exists a.e. O<tzto b0 ¢

Again there is an equivalent formulation of Theorem4.3: F=(F) is a sum of
a process G, as treated in section3 and a process H, which is positive and
Superaddmve and therefore increasing. The set J, of dlscontmumes of |H,||, in
[0,t,] is at most countable. Let Q'(t,)= Q(to)uJ After an elimination of a
nullset H, is increasing for teQ'(t,). For s<t, with seQ'(t,) put H(s, x) (x),
for s<t¢, with s¢Q'(t,) put

H(s,x)= lim H (x).
s<1’s_é§’(ru)
Then H is a representative of H, in (0,¢,) having variation <H, (x). It follows
that F, admits a representative F w1th bounded variation in [0, to] and for such a

representation the limit lim ¢~ ! F(t, x) exists a.c.
t—0
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