

Werk

Titel: A Differentiation Theorem for Additive Processes.

Autor: Akcoglu, Mustafa A.; Krengel, Ulrich

Jahr: 1978

PURL: https://resolver.sub.uni-goettingen.de/purl?266833020_0163 | log25

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

A Differentiation Theorem for Additive Processes*

Mustafa A. Akcoglu¹ and Ulrich Krengel²

¹ Department of Mathematics, University of Toronto, Toronto, M5S1A1, Canada

² Institut für Mathematische Statistik, Universität Göttingen, Lotzestr. 13,

D-3400 Göttingen, Federal Republic of Germany

1. Introduction

Let L_1 denote the usual Banach space of equivalence classes of real valued integrable functions on a σ -finite measure space (X, \mathcal{F}, μ) and let L_1^+ = $\{f \in L_1 | f \ge 0\}$ be its positive cone. As it is customary, we shall not distinguish between the equivalence classes of functions and the individual functions.

By a process F we mean a family $F = \{F_t\}_{t>0}$, indexed with the positive real numbers $t \in (0, \infty)$, such that $F_t \in L_1$ for each t>0. A process is called positive if $F_t \in L_1^+$ (t>0), nondecreasing if $F_t \le F_s$ $(0 < t \le s)$ and strongly continuous if $\|F_t - F_s\|_1 \to 0$ as $t \to s > 0$.

Let $T = \{T_t\} = \{T_t\}_{t>0}$ be a strongly continuous semigroup of positive contractions in L_1 ; this means that the T_t are linear operators in L_1 of norm not exceeding 1 such that $T_tL_1^+ \subset L_1^+$, $T_tT_s = T_{t+s}$ (t,s>0), and such that $T_f = \{T_tf\}$ is a strongly continuous process for each $f \in L_1$. A process $F = \{F_t\}$ is called an additive (superadditive) process (with respect to $\{T_t\}$) if $F_t + T_tF_s = (\leq) F_{t+s}$ for all t,s>0. Interesting examples of additive processes are processes of the form $F_t = \int_0^t T_s f ds$ $(f \in L_1)$ and processes of the form $F_t = (I - T_t) f$, where I is the identity operator.

We study the convergence a.e. of $t^{-1}F_t$ as $t \to 0+0$. As this is meaningless, when the F_t denote equivalence classes and t ranges through all positive reals, we either have to select suitable representatives or we let t range through a countable set only. We shall say that q-lim f_t exists a.e. if the limit exists a.e.,

when t approaches zero taking only strictly positive rational values. Under the assumptions of our results it will always be possible to select representatives of $t^{-1}F_t$ in such a way that for fixed $x \in X$ $(t^{-1}F_t)(x)$ has bounded variation in every finite interval. Therefore, the existence of q-lim $(t^{-1}F_t)(x)$ will be equivalent to

^{*} This work has been done during a visit of the first author at the University of Göttingen.

the existence of $\lim_{t\to 0} (t^{-1}F_t)(x)$ when t>0 approaches zero through all positive reals.

The principal difficulties appear already in Sect. 2, where positive additive processes are discussed. This is combined with a decomposition theorem in Sect. 3 to prove the convergence a.e. of $t^{-1}F_t$ for additive processes satisfying $\sup_{0 < t \le 1} \|t^{-1}F_t\|_1 < \infty$. This contains the local ergodic theorems of Krengel-Ornstein [6], Akcoglu-Chacon [1], and Ornstein [8] as well as the Lebesgue-differentiation theorem for functions with bounded variation. The norm-convergence of $t^{-1}(I-T_t)f$ is usually studied in the analytical theory of semigroups in connection with infinitesimal generators and it seems of interest that a.e.-convergence holds under the above conditions. Another interesting application of the decomposition theorem is Theorem 3.3 which implies that a measurable function $f: \mathbb{R} \to \mathbb{R}$ is a.e. (with respect to Lebesgue-measure) equal to a function of bounded variation if and only if $\lim_{t\to 0} t^{-1} \int |f(x+t)-f(x)| dx$ is finite. Section 4 treats superadditive processes.

The proofs in Sect. 2 make use of ideas of Akcoglu-Chacon [1]. The function Ψ_E appearing there has been inspired by Brunel's lemma. In Sect. 4, ideas of Kingman [5], and of Akcoglu-Sucheston [2] have influenced the arguments.

A refinement of the arguments of this paper can be used to derive a differentiation theorem for additive processes and semigroups of positive linear operators in L_p ($1 \le p < \infty$) generalising the local ergodic theorem of Kubokawa [7]. As this is considerably more complicated and the present methods are interesting in their own right, this will be discussed in a subsequent paper.

2. Positive Additive Processes

A function $\tilde{F}: (0, \infty) \times X \to \mathbb{R}$ is called a representative for the process $F = \{F_t\}$ if \tilde{F} is measurable with respect to the product- σ -algebra coming from the Lebesgue-measurable sets in $(0, \infty)$ and \mathscr{F} in X, and if for each fixed t > 0 the function $\tilde{F}(t, \cdot): X \to \mathbb{R}$ is a representative function for the equivalence class $F_t \in L_1$. It is well known (and easy to see) that every strongly continuous process has a representative. A representative for a positive and therefore nondecreasing process is called a regular representative if $0 \le \tilde{F}(t, x) \le \tilde{F}(s, x)$ whenever $0 < t \le s$ and $x \in X$. It is easy to see that every strongly continuous positive process has a regular representative. Note that an additive process F with $\|F_s\|_1 \to 0$ $(s \to 0)$ is necessarily strongly continuous.

The main result of this section is the following theorem.

(2.1) **Theorem.** If \tilde{F} is a regular representative for a positive additive process with $\|F_s\|_1 \to 0$ $(s \to 0+0)$, then $\lim_{0 < t \to 0} \frac{1}{t} \tilde{F}(t,x)$ exists for a.e. $x \in X$.

This theorem is equivalent to the following one.

(2.2) **Theorem.** If F is a positive additive process and $||F_s||_1 \to 0$ $(s \to 0+0)$, then $q-\lim_{t\to 0} \frac{1}{t} F_t$ exists a.e.

To see this equivalence it is enough to observe that if $\varphi(t)$ is a monotone function then the existence of $\lim_{0 < t \to 0} \frac{1}{t} \varphi(t)$ is equivalent to the existence of q- $\lim_{t \to 0} \frac{1}{t} \varphi(t)$.

The proof of Theorem (2.2) will be obtained after several lemmas. In this section F will always be a positive additive process with $||F_s||_1 \to 0$ as $s \to 0+0$.

- (2.3) Definition of $\Psi_E(F)$. For each t>0 let $\mathscr{P}_t(F) \subset L_1^+$ consist exactly of those $f \in L_1^+$ for which there exists an r>0 and an integer $n \geq 0$ and $f_0, f_1, \ldots, f_n \in L_1^+$ such that (n+1)r < t, $f = f_0 + f_1 + \cdots + f_n$ and such that $\sum_{i=0}^k T_r^{k-i} f_i \leq T_r^{k-i} F_r$ for all $k = 0, 1, \ldots, n$. We then let $\Psi_E^t(F) = \sup\{\int\limits_E f \, d\mu | f \in \mathscr{P}_t(F)\}$ and $\Psi_E(F) = \lim\limits_{t \to 0+0} \Psi_E^t(F)$. Here $E \in \mathscr{F}$, and the existence of the last limit follows from the obvious fact that $0 \leq \Psi_E^t(F) \leq \Psi_E^s(F)$ whenever $0 < t \leq s$. Note that if $\alpha \geq 0$ then $\Psi_E(\alpha F) = \alpha \Psi_E(F)$, where $\alpha F = \{\alpha F_t\}$.
- (2.4) Definitions of S_t and R_t^m . Let $f \in L_1^+$. Then $Tf = \{T_t f\}$ is a strongly continuous positive process and $S_t f = \int_0^t T_\alpha f \, d\alpha$ exists for each t > 0, defined as the strong limit of $R_t^m f = \sum_{i=0}^{m-1} \frac{t}{m} T_{t/m}^i f$ as the integer $m \to \infty$. The process $Sf = \{S_t f\}$ is a positive additive process. If $\tilde{T}f$ is a positive representative for the process Tf then $(\tilde{S}f)(t,x) = \int_0^t (\tilde{T}f)(\alpha,x) \, d\alpha$ defines a regular representative for Sf.
- (2.5) Properties of T and S. Let $h' \in L_1$ with h' > 0 a.e. and let $h = S_1 h'$. Then $\{S_t h\}$ is a positive additive process and also $q \lim_{t \to 0} \frac{1}{t} S_t h = h$ a.e. If C is the support of h then $S_t h > 0$ on C for all t > 0. If D = X C then $T_t f = 0$ on D for each t > 0 and for each $f \in L_1$. From this it follows that if F is an additive process then $F_t = 0$ on D for each t > 0. Hence the existence of $q \lim_{t \to 0} \frac{1}{t} F_t$ a.e. on D is trivial. The proofs of these facts are not too difficult; see [1] and [6] for more details.

For each real number t > 0 let Q(t) be the set of rational numbers r such that 0 < r < t. If $g \in L_1$ then, for example, $\{g > 0\}$ will denote the set on which (a representative of) g is strictly positive.

(2.6) **Lemma.** If $f \in \mathcal{P}_s(F)$ then $S_t f \leq F_{t+s}$ for each t > 0.

Proof. Let $f = f_0 + \dots + f_n$ with $\sum_{i=0}^k T_r^{k-i} f_i \le T_r^k \frac{1}{r} F_r$ for $k = 0, 1, \dots, n$ and (n+1)r < s. First we note that

$$\int_{0}^{t+nr} T_{\alpha} \frac{1}{r} F_{r} d\alpha = \int_{0}^{t+nr} \frac{1}{r} (F_{\alpha+r} - F_{\alpha}) d\alpha$$

$$= \frac{1}{r} \int_{r}^{t+(n+1)r} F_{\alpha} d\alpha - \frac{1}{r} \int_{0}^{t+nr} F_{\alpha} d\alpha \leq \frac{1}{r} \int_{t+nr}^{t+(n+1)r} F_{\alpha} d\alpha \leq F_{t+(n+1)r} \leq F_{t+s}.$$

Now we also have that

$$\begin{split} & \int_{0}^{t+nr} T_{\alpha} \frac{1}{r} F_{r} d\alpha \\ & = \sum_{k=0}^{n-1} \int_{kr}^{(k+1)r} T_{\alpha} \frac{1}{r} F_{r} d\alpha + \int_{nr}^{t+nr} T_{\alpha} \frac{1}{r} F_{r} d\alpha \\ & = \sum_{k=0}^{n-1} \int_{0}^{r} T_{\alpha} \left(T_{r}^{k} \frac{1}{r} F_{r} \right) d\alpha + \int_{0}^{t} T_{\alpha} \left(T_{r}^{n} \frac{1}{r} F_{r} \right) d\alpha \\ & \ge \sum_{k=0}^{n-1} \int_{0}^{r} T_{\alpha} \sum_{i=0}^{k} T_{r}^{k-i} f_{i} d\alpha + \int_{0}^{t} T_{\alpha} \sum_{i=0}^{n} T_{r}^{n-i} f_{i} d\alpha \\ & = \sum_{i=0}^{n} \int_{0}^{t+(n-i)r} T_{\alpha} f_{i} d\alpha \ge \sum_{i=0}^{n} \int_{0}^{t} T_{\alpha} f_{i} d\alpha = (Sf)_{t}. \end{split}$$

These two results together give the desired inequality.

(2.7) **Lemma.** Let F be a positive additive process and let $g \in L_1^+$. If $\sup_{t \in Q(t_0)} (F_t - S_t g) > 0$ on $E \in \mathscr{F}$ then $\Psi_E^{t_0}(F) \geq \int_E g \, d\mu$.

Proof. Let $v = g \cdot \mu$ and let $\varepsilon > 0$ be given. We can find finitely many $t_i \in Q(t_0)$, $1 \le i \le n$, and an $\alpha > 0$ such that, if

$$E_i = E \cap \{F_{t_i} - S_{t_i} g > \alpha\}$$

then $v\left(E-\bigcup_{i=1}^n E_i\right) < \varepsilon$. Let $\delta > 0$ be a number such that $v(A) < \frac{\varepsilon}{n}$ whenever $\mu(A) < \delta$, $A \in \mathcal{F}$. Choose an integer M such that $\|R_{t_i}^m g - S_{t_i} g\|_1 < \alpha \delta$ for all $m \ge M$ and for all i = 1, ..., n. Therefore, if

$$E_i'(m) = E_i \cap \{F_t, -R_t^m g > 0\}$$

then $v(E_i - E_i'(m)) < \frac{\varepsilon}{n}$ for all $m \ge M$.

We now find an r>0 such that $m_i=t_i/r$ is an integer with $m_i \ge M$ for each $i=1,\ldots,n$. Then

$$\begin{split} F_{t_{i}} - R_{t_{i}}^{m_{i}} g &= F_{m_{i}r} - R_{m_{i}r}^{m_{i}} g \\ &= \sum_{j=0}^{m_{i}-1} T_{r}^{j} F_{r} - \sum_{j=0}^{m_{i}-1} r T_{r}^{j} g \\ &= r \sum_{j=0}^{m_{i}-1} T_{r}^{j} \left(\frac{1}{r} F_{r} - g\right) > 0 \end{split}$$

on $E_i'(m_i)$. Hence, letting $E' = \bigcup_{i=1}^n E_i'(m_i)$ and $K = \max(m_1, ..., m_n)$, we have that $Kr < t_0, v(E - E') < 2\varepsilon$ and that

$$\sup_{0 < k \le K} \sum_{j=0}^{k-1} T_r^j \left(\frac{1}{r} F_r - g \right) > 0 \quad \text{on } E'.$$

We now apply the Chacon-Ornstein filling scheme [4, Lemma 1] (with $\frac{1}{r}F_r$ instead of f^+ and g instead of f^-) to obtain functions d_0, \ldots, d_{K-1} such that

$$\sum_{j=0}^{k} T_r^{k-j} d_j \leq T_r^k \frac{1}{r} F_r \quad \text{for all } k = 0, ..., K-1,$$

and such that $d := d_0 + \cdots + d_{K-1} = g$ on E'. Since $d \in \mathcal{P}_{t_0}(F)$ this shows that

$$\Psi_E^{t_0}(F) \ge \int_E d d\mu \ge \int_{E'} d d\mu = \int_{E'} g d\mu \ge \int_E g d\mu - 2\varepsilon$$

and completes the proof.

(2.8) **Lemma.** Let F and G be two positive additive processes and assume that $\sup_{t \in Q(t_0)} (F_t - G_t) > 0$ on a set E with $\mu(E) < \infty$. Then for each $\varepsilon > 0$ there exists a set $E' \subset E$ and a number $\delta > 0$ such that $\mu(E - E') < \varepsilon$ and such that

$$\sup_{t \in Q(t_0)} (F_t - S_t g) > 0 \quad \text{on } E' \quad \text{for all } g \in \mathcal{P}_{\delta}(G).$$

Proof. We find finitely many $t_i \in Q(t_0)$, $1 \le i \le n$, and an $\alpha > 0$ such that if

$$E_i = E \cap \{F_t, -G_t > \alpha\}$$

then
$$\mu\left(E - \bigcup_{i=1}^{n} E_i\right) < \frac{\varepsilon}{2}$$
.

Since G is strongly continuous and G_{t_1+s} decreases to G_{t_1} when $s \in Q(t_0)$ decreases to zero there exists a $\delta > 0$ such that the sets $B_i = \{G_{t_1+\delta} - G_{t_1} > \alpha\}$ have

measure
$$\mu(B_i) < \frac{\varepsilon}{2n} (i = 1, ..., n)$$
. Now, if $g \in \mathcal{P}_{\delta}(G)$, then, by Lemma 2.6

$$F_{t_1} - S_{t_1} g \ge F_{t_1} - G_{t_1 + \delta} = (F_{t_1} - G_{t_1}) - (G_{t_1 + \delta} - G_{t_1}) > 0$$

on $E_i \setminus B_i$. Therefore $E' = \bigcup_{i=1}^n (E_i \setminus B_i)$ has the desired property.

(2.9) **Lemma.** Let F and G be two positive additive processes and assume that $\sup_{t \in Q(t_0)} (F_t - G_t) > 0$ on E for all $t_0 > 0$. Assume that $\mu(E) < \infty$. Then, for each $\varepsilon > 0$ there exists a set $E' \subset E$ such that $\mu(E - E') < \varepsilon$ and such that $\Psi_{E''}(F) \ge \Psi_{E''}(G)$ whenever $E'' \in \mathscr{F}$ and $E'' \subset E'$.

Proof. We choose $\varepsilon_i > 0$ with $\sum_{i=1}^{\infty} \varepsilon_i < \varepsilon$ and also $t_i > 0$ with $t_i \downarrow 0$. The previous

Lemma shows that for each i we can find a set $E_i \subset E$ and a number $\delta_i > 0$ such that $\mu(E - E_i) < \varepsilon_i$ and such that $\sup_{t \in Q(t_i)} (F_t - S_t g) > 0$ on E_i for all $g \in \mathscr{P}_{\delta_i}(G)$. Let $E' = \bigcap_{i=1}^{\infty} E_i$. Then $\mu(E - E') < \varepsilon$.

Let $E'' \subset E'$ be a fixed set. Given an $\eta > 0$ we find an i such that $\Psi_{E''}^{t_1}(F) \leq \Psi_{E''}(F) + \eta$. Hence, if $g \in \mathscr{P}_{\delta_1}(G)$ then, by Lemma (2.8), $\Psi_{E''}^{t_1}(F) \geq \int\limits_{E''} g \, d\mu$ and consequently $\Psi_{E''}(F) + \eta \geq \Psi_{E''}^{\delta_1}(G)$.

(2.10) **Lemma.** If $h = S_1 h'$ us defined is in (2.5), then $\Psi_E(Sh) \ge \int_E h d\mu$.

Proof. For any 0 < s < t < 1 one has $h_s := \int_s^1 T_\alpha h' d\alpha \in \mathcal{P}_t(Sh)$ because of $h_s \le t^{-1} \int_0^t T_\alpha h d\alpha$. Hence $\Psi_E^t(Sh) \ge \lim_{s \to 0} \int_E h_s d\mu = \int_E h d\mu$ for all t > 0.

(2.11) **Lemma.** If F is a positive additive process then, with the notations of (2.5), $q-\lim_{t\to 0}\frac{F_t}{S_th}$ exists a.e. on C.

Proof. If this limit does not exist a.e. on C then there is a set $E \subset C$ with $0 < \mu(E) < \infty$ and two numbers α , β with $0 \le \alpha < \beta$ such that

$$q-\liminf_{t\to 0}\frac{F_t}{S_th}<\alpha<\beta< q-\limsup_{t\to 0}\frac{F_t}{S_th}\quad \text{ on } E.$$

Therefore, $\sup_{t \in Q(t_0)} (F_t - \beta S_t h) > 0$ on E and $\sup_{t \in Q(t_0)} (\alpha S_t h - F_t) > 0$ on E for each $t_0 > 0$. Then, using Lemma (2.9), we can find a set $E'' \subset E$ such that $0 < \mu(E'')$ and $\Psi_{E''}(F) \ge \Psi_{E''}(\beta Sh) = \beta \Psi_{E''}(Sh)$ and $\alpha \Psi_{E''}(Sh) = \Psi_{E''}(\alpha Sh) \ge \Psi_{E''}(F)$. This implies that $\alpha \Psi_{E''}(Sh) \ge \beta \Psi_{E''}(Sh)$, which is a contradiction, since $\alpha < \beta$ and $0 < \int_E h \, d\mu \le \Psi_{E''}(Sh) \le \int_X h \, d\mu < \infty$. The proof of Theorem (2.2) now follows directly from Lemma (2.11) and from the observations in (2.5).

3. Decomposition of an Additive Process

Let $\{T_t\}_{t>0}$ be a strongly continuous semigroup of positive linear operators in L_1 with $\sup_{0 < t \le 1} \|T_t\|_1 < \infty$. We now consider general additive processes $F = \{F_t\}_{t>0}$ satisfying

$$(3.1) \quad \sup_{0 < t \le 1} \|t^{-1} F_r\|_1 < \infty.$$

It is easy to see that the additivity and (3.1) together imply the strong continuity of F.

Note that (3.1) is a consequence of the additivity if F is positive and $\{T_t\}_{t>0}$ is Markovian, i.e. $\|T_t f\|_1 = \|f\|_1$ for all $f \in L_1^+$.

(3.2) **Theorem.** If $\{T_t\}$ and F are as above there exist two positive additive processes $\{F_t^{(i)}\}_{t>0}$ with the properties (3.1) such that $F_t = F_t^{(1)} - F_t^{(2)}$.

Proof. For $t = k \cdot 2^{-n}$ put $F_t^{(n,1)} = \sum_{j=0}^k T_{2^{-n}}^j (F_{2^{-n}})^+$ and $F_t^{(n,2)} = \sum_{j=0}^k T_{2^{-n}}^j (F_{2^{-n}})^-$. From $(F_{2^{-n}})^+ = (F_{2^{-(n+1)}} + T_{2^{-(n+1)}} + T_{2^{-(n+1)}})^+ \le F_{2^{-(n+1)}}^+ + T_{2^{-(n+1)}} F_{2^{-(n+1)}}^+$ it follows that $F_t^{(n,1)} \le F_t^{(n+1,1)}$. For dyadic rationals $t F_t^{(1)} = \lim_{m \to \infty} F_t^{(m,1)}$ exists in L_1 and a.e. and $F_t^{(2)}$ is defined in the same way. The additivity and the property (3.1) can

be verified in a straightforward way for dyadic rationals t, s. By the strong continuity we can define $F_t^{(t)} = \lim_{s \to t} F_s^{(i)}$ for all t > 0 where s ranges through the dyadic rationals, and then the desired properties follow in general by continuity.

If for some $f \in L_1$ $F_t = S_t f$, (3.1) is an easy consequence of the strong continuity of $\{T_t\}_{t>0}$. If in this case $\{T_t\}_{t\geq0}$ is even strongly continuous at 0 and T_0 is the identity one easily shows that $F_t^{(1)} = \int_0^t T_\alpha f d\alpha$. In general only \leq would be true.

It is much less obvious that the above decomposition essentially also gives the decomposition of a function of bounded variation into a difference of two monotone functions—except that above we have dealt with equivalence classes of functions. Actually, condition (3.1) in this case leads to a simple necessary and sufficient condition for a measurable function $f: \mathbb{R} \to \mathbb{R}$ to be a.e. equal to a function of bounded variation. This application of the above decomposition theorem seems of independent interest.

For a measurable $f\colon \mathbb{R} \to \mathbb{R}$ we define F_t on \mathbb{R} (with Lebesgue-measure λ) by $F_t(x) = f(x+t) - f(x)$. This is additive when T_t denotes the translation operator $(T_t f)(x) = f(x+t)$. T_t is a contraction in L_1 and for contractions the supremum in (3.1) is a limit (as $t \to 0+0$) because the additivity implies $\|F_{t+s}\|_1 \le \|F_t\|_1 + \|F_s\|_1$. We define the essential total variation $\|f\|_{\text{ess,t,v}}$ of f by

$$||f||_{\text{ess.t.v.}} = \lim_{t \to 0} \frac{1}{t} \int |f(x+t) - f(x)| dx.$$

The total variation of f is denoted by $||f||_{t,v}$. Call f_1 equivalent to f_2 if $f_2 - f_1$ is constant and λ -equivalent if $f_2 - f_1$ is constant mod λ . $||\cdot||_{t,v}$ is a norm in a space of equivalence-classes and $||\cdot||_{\text{ess.t.v.}}$ a norm in a space of λ -equivalence classes.

(3.3) **Theorem.** If $f: \mathbb{R} \to \mathbb{R}$ is measurable and $f' = f \lambda$ -a.e., then $||f||_{\text{ess.t.v.}} \le ||f'||_{\text{t.v.}}$. There exists an $f' = f \lambda$ -a.e. with $||f||_{\text{ess.t.v.}} = ||f'||_{\text{t.v.}}$.

Proof. As the essential total variation is not changed, when f is changed on a λ -nullset we may assume f = f' and $\|f\|_{\mathbf{t},\mathbf{v}} < \infty$ for the proof of the first statement. As f has a representation f = u - v as the difference of two increasing functions u,v with $\|f\|_{\mathbf{t},\mathbf{v}} = \|u\|_{\mathbf{t},\mathbf{v}} + \|v\|_{\mathbf{t},\mathbf{v}}$, it suffices to prove $\|u\|_{\mathbf{ess.t.v.}} \le \|u\|_{\mathbf{t},\mathbf{v}}$. But for increasing functions the essential total variation coincides with the total variation because

$$\frac{1}{t} \int |u(x+t) - u(x)| \, dx = \lim_{\substack{a \to -\infty \\ b \to +\infty}} \frac{1}{t} \int_{a}^{b} (u(x+t) - u(x)) \, dx$$

$$= \lim_{\substack{a \to -\infty \\ b \to +\infty}} \left\{ \frac{1}{t} \int_{b}^{b+t} u(x) \, dx - \frac{1}{t} \int_{a}^{a+t} u(x) \, dx \right\}$$

$$= \sup_{a \to -\infty} u(x) - \inf_{a \to -\infty} u(x) = \|u\|_{L^{\infty}}$$

To prove the second statement we use the decomposition $F_t = F_t^{(1)} - F_t^{(2)}$ described in Theorem 3.1. It is easy to check that

$$||f||_{\text{ess.t.v.}} = \lim_{t \to 0} ||t^{-1}F_t^{(1)}||_1 + \lim_{t \to 0} ||t^{-1}F_t^{(2)}||_1$$

The essential step of the proof is the following lemma:

(3.4) **Lemma.** If $F = \{F_t\}$ is a positive additive process on (\mathbb{R}, λ) satisfying (3.1) for the translations T_t there exists an increasing $u: \mathbb{R} \to \mathbb{R}^+$ such that for all t > 0 the equation $F_t(x) = u(t+x) - u(x)$ holds λ -a.e.; u is determined uniquely mod λ up to an additive constant.

Proof. Note that this lemma would be very simple if we dealt with actual functions F_t instead of equivalence classes and $F_{t+s} = F_t + T_t F_s$ would hold everywhere. Then $u(t) = F_t(0)$ would do.

For any $j \ge 0$ we define

$$u^{(j)}(x) = \sum_{k=1}^{\infty} F_{2-j}(x - ks^{-j})$$

The sums converge a.e. since for any interval J of the form

$$J = \lceil r 2^{-j}, (r+1) 2^{-j} [(r \in \mathbb{Z}) \| u^{(j)} \cdot 1_J \|_1 \le \| F_{2^{-j}} \|_1 < \infty.$$

The equation

$$F_{i2^{-j}}(x) = u^{(j)}(x + i2^{-j}) - u^{(j)}(x)$$
 (a.e.)

follows for i=1 from the definition of $u^{(j)}$ and for general i by induction using the additivity. Again, using the additivity, we see that

$$F_{2-j}(x-k2^{-j}) = F_{2-(j+1)}(x-2k2^{-(j+1)}) + F_{2-(j+1)}(x-(2k+1)2^{-(j+1)})$$

which implies that all $u^{(j)}$ are equal to $u^{(1)}$ λ -a.e. It follows that

(3.5)
$$F_{x}(x) = u^{(1)}(x+t) - u^{(1)}(x)$$
 λ -a.e.

holds for dyadic rationals t. As F_t converges to F_s ($t \to s$) and $u^{(1)}$ restricted to any finite interval is integrable (so that the restriction of $T_t u^{(1)}$ converges to that of $T_s u^{(1)}$), (3.5) follows for all t > 0. Because of (3.5) and $F_t \ge 0$ the sequences

$$2^n \int_0^{2^{-n}} u^{(1)}(x+\alpha) d\alpha$$

are decreasing and converge for all x to a function u(x) which is increasing. It coincides a.e. with $u^{(1)}$. This proves the desired representation.

Now assume that u' is another increasing function with $F_t(x) = u'(x+t) - u'(x) \lambda$ -a.e. Then w = u - u' has the property $T_t w = w \lambda$ -a.e. for all t. It follows easily from the Lebesgue-density theorem that w must be a.e. constant.

Now we apply Lemma 3.4 to $(F_t^{(1)}, t>0)$ and $(F_t^{(2)}, t>0)$ and find increasing functions u_1, u_2 with $F_t^{(i)}(x) = u_i(x+t) - u_i(x)$ λ -a.e. Clearly $||u_i||_{\text{ess.t.v.}}$

= $\lim_{t\to 0} \|t^{-1}F_t^{(i)}\|_1$. It follows that $f'=u_1-u_2$ is a function of bounded variation with $\|f'\|_{t,v} \le \|f\|_{\text{ess.t.v.}}$. For all t>0 $T_tf'-f'=F_t=T_tf-f$ λ -a.e. It follows as above that f'=f λ -a.e. up to an additive constant and we may assume that this constant is zero by changing u_1 .

The above proof also shows that the decomposition in Theorem 3.2 corresponds exactly to the decomposition of f' into a difference u_1-u_2 of two increasing functions with $\|u_1\|_{t,v} + \|u_2\|_{t,v} = \|f'\|_{t,v}$. In particular $\lim_{t\to 0} \frac{1}{t} \int (f(x+t) - f(x))^+ dx$ is the "essential positive variation". It may be of interest to note the following corollary:

(3.6) **Corollary.** A measurable f is λ -a.e. equal to a constant if and only if $\lim_{t\to 0} \frac{1}{t} \int |f(x+t) - f(x)| \, dx = 0; \text{ it is } \lambda\text{-a.e. equal to an increasing function if and only if } \lim_{t\to 0} \frac{1}{t} \int (f(x+t) - f(x))^{-} \, dx = 0.$

The principal application of Theorem 3.2 is the following differentiation theorem for non-positive additive processes.

(3.7) **Theorem.** Let $\{T_t\}_{t>0}$ be a strongly continuous semigroup of positive contractions in L_1 and F an additive process satisfying (3.1), then $q-\lim_{t\to 0} t^{-1}F_t$ exists for a.e. $x\in X$.

Again, an equivalent version of the result can be stated using representatives: By Theorem (3.2) and the existence of regular representatives for positive additive strongly continuous processes an additive process F satisfying (3.1) always admits a representative $\tilde{F}: (0, \infty) \times X \to \mathbb{R}$ such that $\tilde{F}(\cdot, x)$ has bounded variation in every finite interval for all x. For such a representative $\lim_{t\to 0+0} t^{-1} \tilde{F}(t,x)$ exists a.e.

Theorem 3.7 contains the Lebesgue differentiation theorem and the local ergodic theorems of Krengel-Ornstein, Akcoglu-Chacon, and Ornstein. We remark that Ornstein [8] has stated his result (Theorem 3, p. 109) for processes of the form $F_t = \int_0^t f_{\alpha} d\alpha$ with $(T_t f_s = f_{t+s})$ assuming only $||f_t||_1 \le 1$, but the proof seems to use also $f_t \ge 0$.

(3.8) Identification of the limit in the local ergodic theorem: It may be of interest to add a few words on the identification of the limit of $t^{-1}S_tf$. In the "initially dissipative part" D the limit is zero. Now assume that X coincides with the "initially conservative part" C. If h is defined as in (2.5) we have $\lim_{t\to 0} t^{-1}S_th = h$. Akcoglu and Chacon [1] have proved that $T_0f := \lim_{t\to 0} t^{-1}S_tf$ defines a positive contraction such that $\{T_t\}_{t\geq 0}$ is now defined also for t=0 and also strongly continuous at t=0. If we use $v=h\cdot \mu$ as the reference measure instead of μ the semigroup $\{T_t\}_{t\geq 0}$ corresponds to a new semigroup $\{T_t'\}$ in $L_1(v)$ defined by

$$T_t'g = h^{-1}T_t(h \cdot g)$$
 $g \in L_1(v)$.

This new semigroup has the property $T_0'1=1$. By a theorem of Ando [3] a positive contraction in $L_1(v)$ with $T_0'1=1$ and $(T_0')^2=T_0'$ is a conditional expectation operator. Call $A \in \mathcal{F}$ initially invariant if $T_0'1_A=1_A$. The initially invariant sets form a σ -algebra $\mathcal{J} \subset \mathcal{F}$ and we have $T_0'g=E_v(g|\mathcal{J})$. It is not hard to show that A is initially invariant if and only if there is some $f \in L_1^+(\mu)$ such that $\{f>0\}$ = A and $\int_A T_t f d\mu \to \|f\|_1$. This characterization has the advantage of being independent of the new reference measure v. We may say that using a suitable reference measure (invariant under T_0) the identification of the limit in the local ergodic theorem is given by a conditional expectation—just like in Birkhoff's theorem.

There does not seem to be any canonical description of the influence of the initially dissipative part. In fact, if we assume $h=1_C$ for simplicity, the map $f \to \lim_{t\to 0} t^{-1} S_t f$ from $L_1(D) = \{f \in L_1 | f = 0 \text{ in } C\}$ to $L_1(C)$ can be any positive contraction U_0 with $U_0 L_1(D) \subset L_1(C, \mathcal{J}, \nu)$.

4. Superadditive Processes

Recall that a process F is called superadditive (with respect to $T=\{T_t\}$) if $F_t+T_tF_s \leq F_{t+s}$ for all t,s>0. Note that F is not assumed to be strongly continuous. We shall, however, assume that there exists a $t_0>0$ such that $\sup_{0 < t \leq t_0} \frac{1}{t} \|F_t\|_1 = K < \infty, \text{ in order to prove a differentiation theorem for } F. \text{ (If } F \text{ is additive, this is equivalent to (3.1).) Also, the semi-group } T=\{T_t\} \text{ will be assumed to be Markovian; i.e. that } \int_{T_t} f d\mu = \int_{T_t} f d\mu \text{ for each } t>0 \text{ and } f \in L_1, \text{ in addition to the previous strong continuity and positivity conditions. Under these assumptions, note that } \int_{T_t} f d\mu + \int_{T_t} F_s d\mu \leq \int_{T_t+s} d\mu, \text{ which shows that } \alpha = \lim_{0 < t \to 0} \frac{1}{t} \int_{T_t} F_t d\mu$ exists and is finite. From now on $F = \{F_t\}$, K, t_0 , and α will be as defined above and we shall show that $q-\lim_{t\to 0} \frac{1}{t} F_t$ exists a.e. First we observe that we may assume that $0 \leq F$ and $\alpha = 0$:

(4.1) **Lemma.** There is an additive process G such that $G \leq F$, $\sup_{t>0} \frac{1}{t} \|G_t\|_1 \leq K$ and such that $\frac{1}{t} \int G_t d\mu = \alpha$ for each t>0.

Proof. Let B be the set of strictly positive binary rational numbers. If $t \in B$ with $t = k2^{-n}$ we let, as in the proof of Theorem (3.2), $G_t^n = \sum_{j=0}^{k-1} T_{2^{-n}}^i F_{2^{-n}}$. Then $G_t^n \ge G_t^{n+1}$, since $F_{2^{-n}} \ge F_{2^{-(n+1)}} + T_{2^{-(n+1)}} F_{2^{-(n+1)}}$, and also $\int G_t^n d\mu = k \int F_{2^{-n}} d\mu = t2^n \int F_{2^{-n}} d\mu \ge -K$ if $2^{-n} \le t_0$. This shows that G_t^n converges in L_1 to a function G_t , as $n \to \infty$, and also that $\int G_t d\mu = t \alpha$, for each $t \in B$. If $t, s \in B$ and if n is sufficiently large we see that $\|G_t^n - G_s^n\|_1 \le K|t-s|$ and that $G_t^n + T_t G_s^n = G_{t+s}^n$. Hence the same is also true for G. Therefore it is clear that G_t can be defined for all real numbers t > 0, and that G satisfies the required conditions.

(4.2) **Lemma.** Let F be a positive superadditive process with respect to a Markovian semi-group T and assume that $\lim_{0 < t \to 0} \frac{1}{t} \int F_t d\mu = 0$. Then $\lim_{t \to 0} \frac{1}{t} F_t = 0$ a.e.

Proof. Given $\varepsilon > 0$ we fix a t_0 such that $\int F_{t_0} d\mu \le \varepsilon t_0$ and define a process $H = \{H_t\}$ as $H_t = (I - T_t) \frac{1}{t_0} \int_0^{t_0} F_s ds + \frac{1}{t_0} \int_0^t T_s F_{t_0} ds$ for each t > 0. I again denotes the

identity operator. Note that there is no difficulty with the definition of $\int_0^t F_s ds$ as the strong limit of Riemann sums, since F is a non-decreasing positive process. Now it is clear that H is an additive process and also that $\int H_t d\mu = \frac{1}{t_0} \int d\mu \int_0^t T_s F_{t_0} ds \le \varepsilon t$. We now show that $H_t \ge \left(1 - \frac{t}{t_0}\right) F_t$ for each t, $0 < t < t_0$. In fact,

$$t_{0} H_{t} = \int_{0}^{t_{0}} F_{s} ds - \int_{0}^{t_{0}} T_{t} F_{s} ds + \int_{0}^{t} T_{s} F_{t_{0}} ds$$

$$= \int_{0}^{t} F_{s} ds + \int_{t}^{t_{0}} (F_{s} - T_{t} F_{s-t}) ds + \int_{0}^{t} (T_{s} F_{t_{0}} - T_{t} F_{t_{0-t+s}}) ds$$

$$\geq \int_{0}^{t} F_{s} ds + \int_{t}^{t_{0}} F_{t} ds + \int_{0}^{t} T_{s} F_{t-s} ds \geq (t_{0} - t) F_{t}.$$

Hence $H_t \ge 0$ if $0 < t < t_0$, and consequently $H_t \ge 0$ for all t > 0, because of the additivity. Therefore $q - \lim_{t \to 0} \frac{1}{t} H_t = h$ a.e. and $\int h \, d\mu \le \varepsilon$. This shows that $q - \limsup_{t \to 0} \frac{1}{t} F_t \le h$ has an arbitrarily small integral and therefore $q - \lim_{t \to 0} \frac{1}{t} F_t = 0$ a.e. Combining these two lemmas we have

(4.3) **Theorem.** If $\{F_t\}$ is a superadditive process with respect to a Markovian semi-group $\{T_t\}$ and if there is a $t_0 > 0$ such that $\sup_{0 < t \le t_0} \frac{1}{t} \|F_t\|_1 < \infty$ then $q-\lim_{t \to 0} \frac{1}{t} F_t$ exists a.e.

Again there is an equivalent formulation of Theorem 4.3: $F = (F_t)$ is a sum of a process G_t as treated in section 3 and a process H_t which is positive and superadditive and therefore increasing. The set J_D of discontinuities of $\|H_t\|_1$ in $[0,t_0]$ is at most countable. Let $Q'(t_0) = Q(t_0) \cup J_D$. After an elimination of a nullset H_t is increasing for $t \in Q'(t_0)$. For $s < t_0$ with $s \in Q'(t_0)$ put $\tilde{H}(s,x) = H_t(x)$, for $s < t_0$ with $s \notin Q'(t_0)$ put

$$\widetilde{H}(s,x) = \lim_{\substack{t \to s \\ s < t \in Q'(t_0)}} H_t(x).$$

Then \tilde{H} is a representative of H_t in $(0, t_0)$ having variation $\leq H_{t_0}(x)$. It follows that F_t admits a representative \tilde{F} with bounded variation in $[0, t_0]$ and for such a representation the limit $\lim_{t \to 0} t^{-1} \tilde{F}(t, x)$ exists a.e.

References

- 1. Akcoglu, M.A., Chacon, R.V.: A local ratio theorem. Canad. J. Math. 22, 545-552 (1970)
- 2. Akcoglu, M.A., Sucheston, L.: A ratio ergodic theorem for super-additive processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (to appear)
- 3. Ando, T.: Contractive projections on L_p-spaces. Pacific J. Math. 17, 391-405 (1966)
- 4. Chacon, R.V., Ornstein, D.S.: A general ergodic theorem. Illinois J. Math. 4, 153-160 (1960)
- 5. Kingman, J.F.C.: The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B30, 499-510 (1968)
- 6. Krengel, U.: A local ergodic theorem. Invent. Math. 6, 329-333 (1969)
- 7. Kubokawa, Y.: A local ergodic theorem for semigroups on L_p . Tôhoku Math. J. 2nd Ser. 26, 411–422 (1974)
- 8. Ornstein, D.: The sums of iterates of a positive operator. In: Advances in Probability and Related Topics, vol. 2, pp. 87-115. Editor P. Ney. New York: Marcel Dekker 1970

Received July 31, 1978