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Normal Fitting Pairs and Lockett’s Conjecture

Thomas R. Berger*
School of Mathematics, 105 Vincent Hall, University of Minnesota, Minneapolis, MN 55450, USA

This paper is centered around a rather simple technique (Definition (2.3)) for
extending certain X-normal Fitting pairs from a Fitting class X to the class F
of all finite groups. This technique allows one to consider Lockett’s conjecture
in various forms. We apply the technique to give simple proofs of two such
theorems.

In answer to a question of Laue [8], we prove that SNF_=S_ where ScF
is the class of finite solvable groups.

We also give a simple proof to a result of Bryce and Cossey [3], namely,

that if X =S is a primitive saturated formation then Lockett’s conjecture holds
for X.

I. Preliminary Definitions and Results

Let F be the class of finite groups and S the class of finite solvable groups. A4ll
classes considered will be assumed in F. A Fitting class X is a nonempty class of
groups closed under forming normal subgroups and normal products. The
Fitting class of groups of order 1 is called trivial; all others are nontrivial. Let
X be a Fitting class. In a group GeF, the join Gy of all subnormal X-
subgroups of G is a characteristic X-subgroup of G called the X-radical of G. If
Y is also a Fitting class then we define a product

XY ={GeF|G/GyeY}.

Then XY is a Fitting class, and the product is associative.

We turn now to a discussion of the Lockett x-operation. For a Fitting class
X, define

X*={GeF|G is subdirect in (G x G)y}.
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We mass together the relevent facts about the *-operation. Throughout this
section we quote results in a form often more general than the original. In all
cases, the more general result is proven by minor alterations of the original
proof.

(1.1) Theorem [10, Theorem 2.2, Proposition2.3, Lemma2.1]. Let X be a
Fitting class. The class X* is a Fitting class. Let X, be the intersection over all
Fitting classes Y such that Y* =X*.

(a) X**=X*; (X*),=X,: (X,)*=X*; X, =X
(b) If Y is a Fitting class, then

*°

X¥*=Y*=X =Y, <X cYSX*

(c) If X<Y for a Fitting class Y then X*<Y* and [3, Corollary 3.5]
X, SY,.

(d) For all GeF, [Gy., Aut(G)] =Gy, .

(e) [3, Theorem3.6]. If X<Y for a Fitting class Y, and Ny(X) is the
intersection over all Fitting classes U=2X such that Y, cU<SY*, then X*NY,
=X, implies X* n Ny(X)=X.

If X <S8 then Lockett [10] asked if the following equality always held:
(L.2) X=X*n Ny(X).

It does not [1]. In fact, there is a Fitting class X such that X, +XcS, .
However, the identity (1.2) is of some interest. In fact, because of part (e) of the
theorem, a more interesting identity might be

(13) X*nY,=X,

for Fitting classes X =Y. The identity (1.2) is called Lockett’s conjecture.

We turn next to normal Fitting classes and normal Fitting pairs. A Fitting
class YSX is called an X-normal Fitting class if (1) YEX, (2) for any GeX,
Gy2[G, Aut(G)], and (3) if X is nontrivial then Y is nontrivial. We call a pair
(f, A) an X-normal Fitting pair if A is an abelian group, and f assigns to each
GeX a homomorphism f;: G - A such that

(14) (1) if H,GeX, ¢: H—G is an isomorphism, and ¢(H) <G, then fy
= f¢ ®; and

(2) A=<{/s(G)|GeX).

Let (f, A) be an X-normal Fitting pair and B=< A a subgroup. If for any xeGeX
we set

Jo(x)=fo(x) BeA/B

then (f, A/B) is an X-normal Fitting pair and is said to be induced by (f, A).
Assume now that YSX is a Fitting class; (f, 4) is an X-normal Fitting pair;
and (g, B) is a Y-normal Fitting pair. If B< A and f; =g, for all GeY then we
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call (f, A) an extension of (g, B), and we call (g, B) the restriction of (f, A). There
is only one restriction, though there may be many extensions. With respect to
Fitting pairs and classes, the word “normal” means “S-normal.”

We lump together the results we will need on normal Fitting pairs and
classes.

(1.5) Theorem. Let Y =X be Fitting classes.

(a) [2, Satz5.1]. If Y is an X-normal Fitting class then Y contains all simple
groups in X.

(b) [2, Satz6.2] An intersection of X-normal Fitting classes is X-normal.
Thus, there is a unique minimal X-normal Fitting class.

(c) [3, Theorem 3.4] X is the unique minimal X-normal Fitting class.

(d) [2, Satz3.1] If (f, A) is an X-normal Fitting pair then X, ={GeX| f5(G)
=1} is an X-normal Fitting class.

(e) [9, Theorem 2.4] If'Y is X-normal then there is an X-normal Fitting pair
(f, A) such that X =Y.

A proof is omitted for the following easy lemma.

(1.6) Lemma. If X is a Fitting class, (f,A) an X-normal Fitting pair, and
(f7,A/O(A)) the induced pair for the prime p, then X is the intersection of X,
over all primes p.

Next we discuss a particular Fitting class. For a prime p, let F7* be the class
of all groups in F which have no composition factor of order p. It is
straightforward to verify that F?" is a Fitting formation (i.e. both a Fitting
class and a formation). (For definitions and facts about formations see [7,
Chapter VI].) Notice that F”" nS=S,,, the class of p'-groups in S. The class F*"
is not saturated. For p>3 this can be seen by considering G=PSL(2, Z,.), the
projective unimodular matrices over the integers modulo p%. Here ®(G) is of
order p* and G/®(G)~PSL(2,p)eF?". If GeF, we denote the F?" residual as
07*(G).

I1. The Extension Theorem

(2.1) Hypothesis. Assume the following:
(1) pis a prime:
(2) K=X2Y are Fitting classes;
(3) if GeX then O™ (G)eY;
(4) if GeK and P is a Sylow p-subgroup of G, then PGyeY; and
(5) (f, A) is an X-normal Fitting pair for which A is a p-group.

(2.2) Extension Theorem. If Hypothesis (2.1) holds then there is a K-normal
Fitting pair (f, A) whose restriction to X is (f, A).

Throughout the proof, G will denote a group in K. We now define explicitly
the desired extension.
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(2.3) Definition. Let GeK. Fix H <G such that H/Gy is a Sylow p-subgroup of
G/Gy. Let n=n(G) be a positive integer chosen such that

n[G: H]=1(mod |G|,).
If yeG then set
Fe)=faVe_u)"

where V,;_y is the transfer of G into H/H'.
(2.4) Lemma. f; is a homomorphism of G into A.

Since H/Gy is a p-group and H contains a Sylow p-group of G, H= PGy for
some Sylow p-subgroup P of G and [G: H] is prime to p. By hypothesis, H
=PGyeY<X. In particular, fy and n both exist. Since f, maps H into an
abelian group, H' is in the kernel of f;;. Therefore, f; determines a unique
homomorphism of H/H' into A. It follows that f,(V; _.y(y)) defines a homo-
morphism. Since 4 is abelian, raising to the n'™ power does not change the fact
that we have a homomorphism.

(2.5) Lemma. f is independent of the choice of n=n(G).

Since A4 is a p-group, the exponent of thAe image f,;(G) of G in 4 divides |G,
Thus by the congruence condition on n, f; is independent of the choice of n
=n(G).

(2.6) Lemma. If : G — G, is an isomorphism of G onto G, then for any yeG,
Je)=15,0")-

Suppose that H, and n, are chosen in the definition of f;, to correspond to
H and n respectively. Since Gy is the join of all normal Y-subgroups of G, GY
=G,y. Therefore, HY/G,y is a Sylow p-subgroup of G,/G,y. By Sylow’s
Theorem there is a ueG, so that H{=H". Since A is abelian, G| is in the
kernel of fGl. Thus if yeG then

T, = fu, Vo, )™
= fur, Vo~ 0¥ )™
= fu, (Vo w1
= fue(Vs, _‘H,l‘(y'ﬁ))m
= fuv (Vg gu (V)™
= fuVouO)"
= fuVe-n()"
= o)

Since |G|,=G,|, and [G: H]=[G,: H,], n and n, satisfy the same congruence
condition. Lemma (2.5) allows us to change the exponent. Several times in the
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proof we used the fact that if we H and ¢: H - H, is an isomorphism onto H,
then fi (W)= fyo(W?).

Remarks. (1) If § is taken to be conjugation by xeG or as an element of
Aut(G) then we see that

Je0)=Te(y).
(2) If H{/Gy is a Sylow p-subgroup of G/Gy then H,=H" for some ueG.
We now have
T =160 ) =fuVou( )"
= Vo] )"
= fuuVo—pu))"
=S, (Vo V)"
Thus f, is independent of the choice of H in the definition.

(2.7) Lemma. If GeK is given, f; is independent of all choices made in its
definition.

The only choices were H and n.
(2.8) Lemma. If N <G then fGIszN.

Let yeN. It is an easy computation and a well-known result that if yeG
then V;_ ,(y)=wH’ where w=y1%"1p peG'. The group A is a p-group, so that
all p’-elements of N are mapped to 1 by both f, and f. In particular, we may
assume that y is a p-element of N. Let P be a Sylow p-subgroup of H (hence of
G). Now fy(v*)= fy(v) for all xeG, so that we may assume yeP N N. Since wH’
is a p-element, we may take we P. Now both w and y'®#!lie in P so that v does
also. In particular, veG' N P, the Focal Subgroup of G. We show now that since
veH, fu(v)=1. Let x, te P and assume that x"=t¢ for some beG. Since H/Gy, is
a p-group, both L={(x) Gy and I’=(x") Gy=(1)> Gy are subnormal in H.
Therefore, f,(t)= f;;(x?)= f1»(x") = f.(x) = fy(x), or fy(xt~')=1. By the Focal
Subgroup Theorem [5, Theorem (7.3.4)], these elements xt~' generate the
focal subgroup G’ n P. Therefore, f;, contains G' " P in its kernel, and fj(v)=1.
We conclude that

T = fu Ve g )= fr(W)' = fa (1S H )"

=fH(Y)[G:H]".
Now GynN =N, and H =Gy so that Ny=Gyn(HNN). Thus
(HAN)/Ny=(HAN)/Gyn(HNAN)~(HNN)Gy/Gy £ H/Gy.

a p-group. But HAnN=PnN, a Sylow p-subgroup of N. We conclude that if
K=HAN then K/N, is a Sylow p-subgroup of N/Ny. Since K=HnN,
[HN:H]=[N:K].
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Computing, we now have

n[G: H]=n[G:HN][HN:H]
=(n[G:HN])[N:K]
=1(mod |G|,
=1(mod [N])).

By Lemma(2.7), we may take K (as H) and m=n[G:HN] (as n(N)) in the
definition of fy. Let =P N so that F, is a Sylow p-subgroup of N. By an
argument exactly as for G, we conclude that Vy_ (y)=uK’ where u=yN:Klp
and beN'nP,. Since, as before, fy(b)=1, fy(y)=[x(™ X" But [N:K]m
=[G:H]n. Since yeK <H,

Fe)= fa)Hm= f (1) 1" = fu(y),
completing the proof of the lemma.

(2.9) Lemma. If GeX then fy= f. In particular, A={f(G)|GeK).

Since GeX, 07*(G)eY. Thus 07’ (G)<Gy. We now know that G/Gy has no
composition p-factors. That is, Gy covers all composition p-factors of G. Thus
G=0"(G) Gy. Let yeG so that y=xw where xe0”(G) and weGy. Both f; and
]iG map G into A, a p-group, so that O?(G) is inAthe kernel of both maps. Thus
fe)=few) and f5(y)=fs(w). In particu[ar, fo=16 if f6y=Jey- This latter
equality is obvious from the definition of f, since Gy€Y. The lemma follows.

These lemmas together prove the Extension Theorem.

II1. Applications
A. The Conjecture of Laue

(3.1) Theorem. F,nS=S_.

Choose an S-normal Fitting pair (f, A) such that S,=S_. For a prime p, let
(f?, A?) be the induced pair with A”?=A4/0P(A4). Then by Lemma (1.6), NS,
=S, where p runs over all primes. For the Extension Theorem we take K=F
and X=Y=S. If GeX =S then 0”'(G)=07(G)eY=S. If GeF and P is a Sylow
p-subgroup of G, then PGyeY =S since GyeY=S. Hypothesis (2.1) holds for
(f?, A?) and each prime p. By the Extension Theorem there is an extension
(f7, A?) of (f?, A7) to F. Let F° be the intersection over the classes F;, for all
primes p. Then clearly F°nS=S,. Since by Theorem(l.1)(b) and
Theorem (1.5)(c), F°2F,, we have F,nS<S,. By Theorem (1.1)(c), F, 28, so
that we have F,nS=S_, completing the proof.

B. The Theorem of Bryce and Cossey

Primitive saturated formations are defined by Hawkes in [6]. Bryce and
Cossey prove the following.
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(3.2) Theorem [4, Section4]. The primitive saturated formations in S are
precisely the subgroup closed Fitting formations in S.

For a set of primes n we let S, be the class of n-groups in S. If 7= {p} then
we set S, =S .

(3.3) Theorem (3, Lemma2.3). If YES is a primitive saturated formation of
bounded Fitting height then Y=nY,, i=1,2,...,00 where each Y, is a finite
product of S,’s for various sets of primes .

Fix a primitive saturated formation X <S. For an integer n>0 we let N" be
the class of groups in S of Fitting height_at most n. Set X, =X~ N" so that
X=uUX,,i=1,2,..., 0. Each of the classes X, isa pr1m1tlve saturdted formation

of bounded Fitting height. By Theorem (2.3), X, = m Y, where Y, is a product

(34) Sn(n.i.l)Sn(n.l’.Z)"'S

n(n, i, t,)

where t;=1 and all n(n,i,j) are sets of primes. }
Let K<S be a subgroup closed liitting class, and (f, 4) a (KN X)-normal
Fitting pair such that (KnX),=(KnX),. We prove now that

(3.5 (KnX),=K,nX.

Let X=KnX, X,=KnX,, and Y,=KnY,, so that X,=nY,, and
XuX,. i

Fix a prime p and let (f?, A?) be the Fitting pair induced by (f, 4) in A?
=A/0"(A). Fix an integer n>0, and let (f™", A™") be the restriction of (7, A7)
to X,. We wish to obtain an extension (f 7", A”") of (f7", A*") to K. If there is
an integer i >0 such that p¢n(n,i,j) for all sets 1 <j<t,, then X, is a class of p'-
groups. Since A”" is a p-group, the pair (7", A") is trivial and has a trivial
extension to K. Therefore, we may assume that for each i there is a unique
largest integer s;, 1 <s;<t,, such that pen(n,i,s;). Let A, be the product of the
first s; factors in (3.4) and B,; the product of the remaining factors. Since pen
=n(n,i,s;), S, S,=S, so that A S, =A,,. Further, B, is a class of p’-groups by
the choice of 8, and

Yni:AniBni'
Let ? =(mA J)nK so that Y, <X, cK.

We verlfy the hypotheses of the Extension Theorem for the classes K, X,
and Y Let GeX,. Since 07 (G)=0"(G) <G and X, <K, 07(G)eK. Smce
GeX, CX ,GeY,, for all i. Now G/G €B,;cS, so that 07(G)=0"(G)=G;,,

for d]l i. Thus o (G)e(m A, )nK= verlfymg (3) of the hypotheses.
Next let GeK. Now G €A, foralliand A,;S,=A,; so that PGy €A, for

ni~p
all i where P is a Sylow p- subgroup of G. Smce K is subgroup closed

PGy, e N A,)nK=Y,, verifying (4) of the hypotheses.

Smce all other parts of the hypotheses hold, by the Extension Theorem
there is a pair (™7, 4™?) on K whose restriction to X, is (f™P,A"P).
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Let GeK, nX=K, ~X. Since G has some Fitting height, we assume this to
be n. Now GEK SO that G<kerfG" P by Theorem(l 5)(c). Since GeKnXnN"
=KnX,=X,, and (f™P, A™P) extends (f" P A™P), fop= fnP But (f™F, A™?) is
the restriction of (f7, A") to X, so that 1> po &P= f&. In particular, Ger,, for
every prime p. By Lemma(1.6), GeX,. We now have K ,nX<X,. By
Theorem (1.1)(c), X, =K, so that K, mX K,nX=X —-(KmX)* This proves
the identity (2.5).

(3.6) Theorem (3, Theorem4.17). Assume that X<S is a primitive saturated
formation and that K<S is a subgroup closed Fitting class. Then

K, nX=(KnX),.

Applying the theorem with K=S8 and Theorem (1.1)(e) we have:

(3.7) Corollary [3, Theorem 1.3]. If X is a primitive saturated formation then X
=X* n Ny(X), i.e. Lockett’s conjecture holds for X.
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