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On the Conjugacy Problem for Knot Groups

Kenneth I. Appel

1. Introduction

In this paper a technique is developed for solving the conjugacy problem for
a large class of knot groups. In particular it provides the first known proof of the
solvability of the conjugacy problem for the group of a non-alternating knot.
The technique is applied to solve the conjugacy problem for the infinite class of
(non-alternating) cable knots of type (2,1) on knotted tori. It is also applied to
solve the conjugacy problem for two more complicated knots, and to provide a
different proof for the theorem of Weinbaum [12] on prime alternating knots.

The approach is based on the small cancellation arguments of Lyndon and
Schupp. We employ the Wirtinger presentation of the knot group (rather than
the Dehn presentation employed in [12] and [2]). Since this presentation satisfies
almost none of the small cancellation conditions on relator regions, we are forced
to use somewhat differently defined faces in the graph theoretic part of theapproach.
The principal tool employed is the dual of a (small cancellation type) conjugacy
diagram, and the resulting natural faces which we call sections. In this paper we
consider only prime knots. With considerable additional machinery the approach
was extended to all alternating knots in the work announced in [1], but it seems
reasonable that the method in [2] will eventually show that the conjugacy problem
for a composite knot is solvable if those for its prime parts are solvable.

While the basic techniques are developed in a uniform manner, their applica-
tion makes use of specific properties of the knots examined. There is as yet no
uniform procedure for applying the technique to all knots, but there are no
known cases where it does not apply.

This research was supported by the National Science Foundation. It profited from many conver-
sations with P.E.Schupp, C.F.Miller, R. Finney, G. Francis, R.C. Lyndon, and especially W. Haken.

2. Background
a) Knot Theory (see [4, 8, 9])

A knot is a subset of 3-space which is homeomorphic to a circle. We consider
only tame knots (see references for precise definition). Such a knot may be de-
formed into a polygon (i.e, a union of a finite number of line segments). This
polygon may be projected into a plane disjoint from the knot (and intuitively
below it) in such a way that the following conditions are satisfied: i) the only
multiple points of the projection are double points; ii) no double point is the
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image of any vertex of the polygon; iii) there are finitely many double points.
When the term projection is used we shall always mean such a projection.

We will use the term crossing for the preimage of a double point of the pro-
jection. The “higher” of the two preimage points will be called the overcrossing
point and the lower will be called the undercrossing point. The images of small
arcs of the knot including these points are called overcrossing and undercrossing
curves, respectively.

Let K be a knot and let S be a 2-sphere which intersects K in precisely two
points. Define K, and K, to be components if K, is the union of the part of K
lying outside of S, the two points of intersection and an arc on the sphere joining
the points and K, is similarly defined for the part of K lying inside S. K is called
prime if no such sphere S splits K into two components neither of which has
complement homeomorphic to that of the circle. A projection is called minimal
if no other projection of the knot has fewer crossings. A knot is called alternating
if it has some projection for which undercrossing and overcrossing points alternate
on the knot.

We will use Fig. 1, which gives a minimal projection of the prime non-alternat-
ing knot with eleven crossings constructed by Little [5] to illustrate some further
definitions.

The group of a knot K is defined to be the fundamental group of the comple-
ment of K. Given a projection n’ of a knot K, we obtain a Wirtinger presentation
for the group of K as follows: With each arc of the projection joining consecutive
undercrossing points, we associate a generator a; numbered so that successive
generators in the orientation of the projection have successive subscripts. (In
practice we will often use a,b,c,... for a,,a,,a;,....) Associate a relator with
each crossing as follows: draw a circle about the crossing, with radius small
compared to the minimal distance between crossings. Read off, in counterclock-
wise order, the generators crossed by the circle, assigning exponent 1 if the genera-
tor is directed into the circle, and — 1if it is directed out of the circle. For example,
in Fig. 1, the relator R, associated with the crossing R is a gb~'g™', while the
relator R, associated with R, is ca='d~'a. In general, relators for a Wirtinger
presentation of the group of an n-crossing knot will have the form a;aj;; ai e
(where subscripts are taken modulo n and where j(i) is the subscript of the over-
crossing generator at the crossing). Thus, a Wirtinger presentation has n generators
and n relators. It is well known (and easy to prove using techniques developed
below) that any one of these relators is a product of conjugates of the other n—1,
and hence one relator may be omitted. On the other hand, it is known that the
abelianization of any knot group is infinite cyclic, so that at most one relator
may be omitted. We will always eliminate one of the n such relators from our
group presentation. The crossing corresponding to the omitted relator will be
called the special crossing of 7’ and denoted by X. The resulting presentation of
the knot group will be called a special Wirtinger presentation.

b) Small Cancellation Theory and Graph Theory (see [7, 10])

Let G be a group with presentation <ay, ..., a,; Ry, ..., R,,). Let W, and W,
be words on the a; which represent conjugate elements of G. We may construct
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Fig. 1. Little’s 11-crossing non-alternating knot

a connected diagram with the following properties: i) the diagram is an annular
graph whose directed edges correspond to occurrences of generators a; and their
inverses; ii) the word obtained from each face by reading counterclockwise from
any starting point the sequence of generators and inverses corresponding to the
edges on that face is a cyclic conjugate of a relator or its inverse; iii) the word
corresponding to the inner boundary is W, ; and iv) the word corresponding to the
outer boundary is W, . (Here we think of the boundaries as bounding faces in the
complement and use the term boundary word for the word obtained from such
a “face™.)

A critical tool in the work of Lyndon and Schupp is an elegant counting
formula derived from Euler’s formula (see Schupp [10, Lemma 2.1]). We shall
use a special case of this formula. Let M be a connected planar graph, such that
each face has connected boundary, and each edge and vertex lies on a face. Let
d(v) (the degree of vertex v) be the number of edges lying on v, and let d(D) (the
degree of face D) be the number of edges on D. Let Z’ mean a sum taken over
boundary vertices, and Z° a sum taken over interior vertices. Let 4 be the number
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of holes in M. Let E* and V" be the number of boundary edges and faces respec-
tively. Then the formula states

41-m=Y'(3—d)+Y°(4—dv)+)Y.(4—d(D)+V +E". 1)

3. On Conjugacy Annuli

We remark that in solving the conjugacy problem we may assume that no
conjugacy annulus contains a pair of points whose deletion would disconnect the
annulus. For if such a pair exists, then the deletion of one of them reduces the
question of the conjugacy of a pair of words to the question of whether a single
word (the boundary word of the new figure) equals the identity of G. But this is
just the word problem which was solved for all knot groups by Waldhausen [11].
One might note that the arguments in this paper may be applied to disks to yield
a separate proof of Waldhausen’s result for the groups we consider.

We observe that the conjugacy problem for a group is solvable if we have a
recursive function f of two variables such that whenever W, is conjugate to W,
in the group then there is a word V such that if W, has length w;, i=1,2, as a
word on the generators of the group then V has length at most f(w,,w,), and
V~1W, V=W,. For, since we are dealing with finitely generated groups, we could
exhaust all words of length at most f(w;,w,) and know that if no one of them
conjugated W, into W, then the words were not conjugate.

A conjugating word V for W, and W, in a conjugacy annulus they determine is
a word obtained by reading the generators on a path in the annulus from the
beginning of W, to the beginning of W,. Thus we will be able to use the following
procedure to show the conjugacy problem solvable for certain knot groups.
First, we will show that there exists a recursive function g(n, k) such that if W,
and W, are words on the generators of a group G with n generators with w; + w, =k
then if W} and W, are conjugate in G then there is a conjugacy annulus attesting
to this fact which has fewer than g(n, k) faces. Then we will simply observe that
any conjugating word must have length less than four times the number of faces.

In Section 4 we shall describe the construction of the dual of a given conjugacy
annulus 4. We first describe here a construction which produces a copy of A which
we hereafter identify with A itself. The construction is as follows:

Stage 0. Define A, to be any face of A.

Stage k+1. Case 1. Suppose that A4, has two adjacent boundary edges,
e, and e, corresponding to the same interior edge of A. Suppose further that
these edges bear inverse labels a, and a; . Then A4, , is formed from 4, by iden-
tifying e, and e,. (We will describe this operation as cancelling e, against e,.)

Case 2. Suppose that Case 1 does not apply and there is at least one face R
of A which is not a face of 4,. Furthermore, suppose that some edge e, of R is
identified (in 4) with a boundary edge e, of A,. In this case, form 4, ., by adding
face R to A, and identifying e, with e,.

Case 3. Suppose that neither Case 1 nor Case 2 applies, but A is not simply
connected and there are two non-adjacent boundary edges e; and e, in 4, which
are identified in A. In this case, form A, ,, by cancelling e, against e,.
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The construction is finished when none of Cases 1, 2, 3 occurs.

We note that all regions of 4 appear in A,,, where m+ 1 is the number of the
stage at which Case 3 first occurs. Clearly, 4, is itself simply connected. Hence,
if 4 is simply connected the construction will apply with no instances of Case 3,
while if 4 is a conjugacy annulus then one instance of Case 3, possibly followed
by further instances of Case 2, will suffice. The number of stages in the construction
of A is precisely the number of interior edges of A, since each stage forms an
interior edge. We note that the construction only requires that A4 have no finite
set of points by whose removal 4 becomes disconnected.

4. On the Dual of an Annulus

First, we shall introduce some further terminology. A projection 7’ of a knot
K may be thought of as a graph whose vertices are the crossings. The edges of
this graph will be called strings of the projection. The preimage of a string of the
projection, namely an arc of the knot Joining crossing points, will be called a
string of the knot. Thus a generator may be viewed as a union of consecutive
strings and overcrossing points.

Let n’ be a minimal projection of the prime knot K. We will use the term
component of n’ to mean a maximal connected component of the complement
of ' in the plane. Two components will be said to lie on a string of n'if that string
is part of the boundary of each of the components. We note that since K is prime
two components of 7’ cannot lie on more than one common string. Choose ¢>0
but small relative to the minimal distance between crossings of n’. We delete
from 7’ those points in the image of each undercrossing string of the knot lying
within distance ¢ of the crossing, and call the deleted projection 7. We will refer
to components of z’ as components of n. We note that the maximal arcs of  are
Just the generators of the presentation. If C and D are components of 7’ lying on a
string of n’ which is crossed by a generator g then we note that the definition of x
requires that a terminal segment of the string be deleted. Thus in the complement
of n there is a passage from C to D connecting these components.

Using this terminology, we will describe the construction of the dual §(4)
of annulus 4, imagining that the construction of 0(A) takes place simultaneously
with that of 4. In forming the dual, we shall give measurements for certain radii
and distances. Although not necessary for the theory, this will enable the reader
to construct a dual which has only finitely many self intersections, all of which
are double points. Now we may define 6(4,) for each k as follows.

Stage 0. A, is a face of A which is labelled by some relator, say R;. Let R}
be the crossing of the projection corresponding to A4,. 6(A4,) is defined to be an
oriented circle of radius 3¢/2 with center at RY. 6(Ay) is oriented in the counter-
clockwise direction if the face is determined by an instance of R,;. It is oriented
in the clockwise direction if the face is determined by an instance of R; 1.

We call the circle §(4,) the dual of face A, for the following reasons. First,
starting at any point on the circle and proceeding in the direction of the orientation,
the circle is intersected by four generators in their order of occurrence in a cyclic
conjugate of R, if the circle is oriented in the counterclockwise direction while the
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order is that of R; ! if the circle is oriented in the clockwise direction. We interpret
an intersection of the circle with the generator as a positive occurrence if the
(oriented) generator crosses the circle from right to left (from the point of view
of an observer proceeding in the direction of the oriented circle) and as a negative
occurrence if the generator crosses the circle from left to right. With this conven-
tion, the signed generator occurrences agree with their appearances in the relator
(or relator inverse) corresponding to the circle. Having associated the generator
occurrences, which determine edges on the face, with points of the dual, we
associate vertices of the face with arcs of the dual, namely the arcs joining the
associated pairs of edge duals.

At each stage of the construction the dual will be related to A, in a manner
similar to that described above. In particular, we shall construct 6(4,) so that the
following conditions are satisfied.

1) If k<m (where stage m+1 was the first stage at which Case 3 was used) then
5(A4,) is a set of distinct closed curves, exactly one of which intersects 7. Ifk>m
then 6(4,) is a set of distinct curves more than one of which intersects 7.

2) A curve in 8(4,) which intersects 7 is called a dual boundary curve of Ay. It
intersects 7 in a sequence of edges corresponding to a boundary word of 4, in the
manner described above.

3) The dual of an interior edge of 4, will be a pair of arcs in 6(4,) which do not
intersect m. These arcs are parallel to the generator corresponding to the label
on the edge.

4) The dual of a vertex of 4, is a curve containing intersection points with genera-
tors corresponding to the boundary edges on the vertex and arcs which belong to
the duals of interior edges on the vertex. If v is an interior vertex, then its dual
8(v) is a closed curve not intersecting .

It may be verified from the construction that these conditions hold at Stage 0.
It will be clear that the conditions are preserved by the inductive step.

Stagek+1. We proceed in two steps. First we define a set §* of curves and then
obtain 8(A4,,,) by a cancellation. In Cases 1 or 3 of the construction of A,
5*is8(A,). In Case 2, 6* is the union of 6(4,) and a circle of radius (2*+*~2)g/2*3,
with center at the crossing R* determined by the relator associated with the added
face. The circle is oriented counterclockwise or clockwise according as the face
corresponds to R or R~*. The edges which are cancelled at stage k+1 of the
construction of 4 are each dual to an intersection of # with a generator. In order
for cancellation to take place the same generator must be involved in both inter-
sections and the arcs containing these points must be oriented so that they cross
the generator in opposite directions. Thus we may assume that e, corresponds
to some a and e, corresponds to a; .

Fig. 2 illustrates certain situations which arise in the cancellation of a pair
of edges in this construction. In each of the four pairs of figures, the dual of the
entire top diagram is shown as the union of the solid and dotted curves. The solid
part of the dual curve for a), b), and c), is the dual of the interior edge which is
cancelled. The names listed for the interior edges and vertices will be defined and
explained in Section 5. The projection used is that of Fig. 1.
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The second step of stage k+1 is to construct (4, +1) from 8* as follows.
First, add to 6* two line segments parallel to generator a; and at distance
(2*+3—1)¢/2**3 from a; on either side beginning and ending at 6* on arcs con-
taining the points dual to the cancelled edges. Next, delete the small arcs con-
taining the cancelled edges which join the new segments. Last, choose an orienta-
tion for each new segment consistent with the curve to which it is joined.

Note that the new segments do not intersect n since the distances have been
chosen so that they “fit through” passages. The segments added are defined to be
the dual of the new interior edge of A, +1- The duals of the two vertices on this
edge are the curves of 6(4,. ) to which the dual of the edge belongs.

In Cases 1 and 3, the replacement of 5(4,) by 0(A, ) increases the number
of curves of the dual by one. In Case 2, the number of curves is unchanged. We now
verify some further properties of the dual.

Lemma. Of the curves in §(A,), k<m, exactly one intersects n.
19a Math.Z, Bd. 138
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Proof. This may be seen by induction as follows. It is true by definition for
k=0. Consider stage k + 1. If Case 1 is used, the unique curve in 6(4,) is replaced
by two curves. Since the identified edges are adjacent, their common vertex v
becomes an interior vertex. One of the two curves obtained is the dual of this
vertex, and since the vertex lies on no boundary edges, the dual curve cannot
intersect . The other curve must contain the duals of all boundary edges and
thus must intersect 7. It is the only curve in 8(4,,,) which intersects © and is
called the dual boundary curve of A, ,.In Case 2, no new interior vertex is created
but the dual boundary curve of A4, is replaced by a curve with three more inter-
sections with n. Since k<m, Case 3 does not apply.

At stage m+ 1, the disk A4, is replaced by an annulus 4,,,,. In this situation
the dual boundary curve of 4,, is replaced by two curves both of which intersect 7.
Since A is an annulus, no further applications of Case 3 are made and an argument
similar to the lemma above shows that A itself has exactly two curves in its dual
which intersect 7.

5. Sections of A

As previously indicated, the graph whose faces correspond to individual
relators does not satisfy the small cancellation conditions of Lyndon and Schupp.
We will now define a new graph whose faces are unions of the faces of our previous
graph. We will henceforth call the faces of our original graph relator regions.

If e is an interior edge of A, its dual consists of two parallel curves in 6(A4)
(see Fig. 2). If each of these curves lies in a single component of 7 then the edge e
is called an internal edge. (It will be internal to a face of our new graph.) Note
that if e is an internal edge then the relators it separates must have dual circles
of the same orientation. If e is not an internal edge but is an interior edge of 4 it
is called an external interior edge.

Suppose v is an interior vertex of 4 which lies on an external interior edge.
Its dual &(v) contains one of the curves in the dual of e so it cannot lie in a single
component. The number of edge duals in d(v) which lie in more than one com-
ponent is just the number of external edges on v.

Lemma. No interior vertex lies on precisely one external interior edge.

Proof. If v was an external vertex which lay on just one external edge then
5(v) would contain precisely one edge dual which lay in more than one component
of 7. Hence this edge dual would begin and end in the same component. Thus the
generator along which it overcrosses out of and into this component overcrosses
every string of 7’ it intersects between these crossings. But this means n could not
be minimal, for the part lying between the exit from the component and the
reentry could be “pulled back” (as in Fig. 3) to reduce the number of crossings of
K, contradicting the minimality of the projection.

Thus we note that every external vertex lies on a path of external edges which
either joins two points of the boundary of 4 or is a closed path. This means that
we may use the external edges to form a coarser partition of A than was obtained
by using all edges. The graph that we obtain will be called the section graph of A.
Its faces will be called sections. We will show that this graph is much more amenable
to small cancellation type arguments than is the original graph whose faces were
the relator regions.
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An edge of A is interior to a face of the section graph (except possibly for its
end vertices) if and only if it is an internal edge of A. This definition permits us to
refine our minimality condition for A. A is a minimal annulus if among all annuli
with the same boundaries (i.e. boundary edge sequences determined by the same
pair of conjugate words), 4 has the smallest number of regions, and among those
annuli with the smallest number of regions A has the smallest number of external
edges. It is important to note that this definition forbids adjacent regions to be
inverse and in position to cancel totally against one another. An immediate
consequence of the minimality condition is the following lemma.

Lemma A. Let v be an external interior vertex and let e,,...,e,_, be the
consecutive external edges on v. Let e, and €;+1 (subscripts modulo m) correspond
to the same generator h. Then the duals of e; and e; ., must be oriented in the same
direction and hence a face with e; and e, , as consecutive boundary edges will not
have consecutive labels h* and h* at v.

Proof. Suppose not. Consider the section S on which the edges lie (see Fig. 4).
If S is cancelled along these edges we would obtain a new section §” with perimeter
smaller than that of S by the removal of the two cancelled edges. Thus we obtain
an annulus with the same number of regions but fewer external edges, contradicting
minimality.

The construction of a dual given in Section 4 may be applied to define the dual
of a section. In most cases of interest we will deal with simply connected sections
and will seek information about the sections from their duals,

u 9

original situation reduced situation
Fig.4
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We will use some elementary properties of winding numbers. We take the
viewpoint of [3] where the winding number of a closed curve C about a point P
is shown to be the number of positive crossings minus the number of negative
crossings of the curve over any ray from P to infinity. The concept of negative
and positive crossing corresponds with our definition of negative and positive
generator occurrences on vertex and edge duals so the theory is immediately
applicable.

If a relator R determines the labels of m faces of a section S we say that R
occurs m times in S.

Lemma. If relator R occurs m times in section S then the absolute value of the
sum of the winding numbers of the curves in §(S) about R* is m.

Proof. First, we note that since every interior edge of a section is internal, all
regions must be determined by relator occurrences with the same sign. Since the
lemma is stated in terms of absolute value we lose no generality in assuming that
every relator occurs positively in S. In the construction of the dual, an occurrence
of Case 2 which adds a circle about R* increases the winding number of §(4,) about
R* by one. Other occurrences of Case2 do not affect this winding number.
In Cases 1 and 3 the number of curves in the dual is increased but the winding
numbers about the crossings are not changed. Thus the lemma is true by induction.

An interior vertex of a section lies on internal edges only. Hence, its dual
lies entirely in one component of 7. Such a curve must have winding number zero
about each crossing. Thus, W,(S), the number of occurrences of relator R in section
S, which shall be called the weight of R in S, is the absolute value of the sum of
the winding numbers of the dual boundary curves of S about R*. We define the
weight of S, W(S) to be the maximum (over all relators) of Wx(S).

Let C be an oriented closed curve with no multiple points except for isolated
double points. At each double point we will call the two arcs oriented towards
the point incoming curves and the two arcs outgoing curves. Fach incoming curve
is associated with an outgoing curve by the parametrization of C. By a switch
at double point p we mean a reparametrization which changes the association of
incoming curves with outgoing curves at p. We define the simplification of C to
be the reparametrization which effects a switch at each double point of C. Simpli-
fication replaces C by a union of simple closed curves which intersect only in the
double points of C. Clearly the sum of the winding numbers about any point of
the curves in the simplification of C is the same as the winding number of C about
that point. Thus, if C has winding number m about a point g there must be at least
m curves in the simplification of C with g in their interiors. (Note that a simple
closed curve has winding number —1, 0, or 1 about any point.)

Let S be a section and let 4(S) be the collection of dual boundary curves of S.
(Usually this will be a single curve.) Let R be a relator such that W(S)= Wi(S).
By the remarks above there must be at least W(S) closed curves in the simplification
of A(S) which contain R* as an interior point. But, it is easily observed from the
construction of the dual that X, the special crossing, must lie exterior to every
such curve. Hence each of these curves must separate R* from X.

Since a knot projection is a graph all vertices of which have degree four, a
standard lemma of graph theory (see [6; p. 244] or [8]) to note that complementary
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components may be “properly two colored ”. This means that they may be colored
with two colors in such a way that whenever two components both lie on the same
string their colors are different.

Since § is a section, the duals of interior edges do not contain segments which lie
in more than one component. Thus, the dual boundary curves (and hence any curve
in their simplification) can only change components at the duals of boundary
edges. This means that each curve in the simplification of A(S) must intersect & at
an even number of points. If K is prime, by definition any curve which contains a
crossing in its interior and another in its exterior must intersect 7 in at least four
points. We may state this in terms of degrees and weights as follows.

Lemma B. If S is a section of a conjugacy diagram Jor the group of a knot K
then d(S)=2 WS). Moreover, if K is prime then d(S) =4 W(S).

Recall that we only consider conjugacy annuli without any pair of points
whose removal would disconnect the annuli. Even with this restriction it is pos-
sible to obtain a partition into sections without connected boundaries. (For
example, a section can itself be an annulus.) It is easy to show that by addition
of edges and vertices on such boundaries we may insure that every section has a
connected boundary. We will henceforth assume that this has been done.

6. Sound Assignments

For an annulus with our restrictions, in the terminology of Formula L,V'=E"
and h=1 so that we obtain the somewhat simpler formula:

Z'(3—d(v))+2°(4—d(v)) +Y (4—d(D))=0. 1)
Observe that Formula 1’ tells us that the sum of the degrees of all vertices and faces
is precisely four times the number of faces plus four times the number of interior
vertices plus three times the number of boundary vertices.

We wish to interpret Formula 1’ in a somewhat different manner. Note that
every edge contributes to the degrees of the vertices and faces on which it lies.
Each interior edge “contributes one unit” to the degrees of the two faces and the
two vertices on which it lies, a total contribution of four. Similarly, boundary edges
make total contributions of three. We wish to generalize this procedure slightly.
Each edge will contribute the same number of units to the degree sum, but the
contributions will not necessarily be made to the faces and vertices on which it
lies in the same uniform manner.

More formally, we shall define a generalized degree assignment for a graph as
an assignment of integers to the faces and vertices based on the following rules.

1) The assignment to each face and vertex is a sum of integer units “contributed”
by the edges on the face or vertex.
2) The total contribution of an interior edge is four units. (These must be con--
tributed to vertices or faces on the edge.)
3) The total contribution of a boundary edge is three units.

We will write p(v) or p(D) for the generalized degree of a vertex or face. Define
A= B to be the maximum of 4— B and 0. Then, by the above reasoning we obtain
19b Math. Z, Bd. 138
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the following analogue of Formula 1’ for our conjugacy annulus.

S (B3=pv)=Y"(p(v)—4)+ Y (p(D)—4)+ Y {p(v)= 3). Q2
(Note that no boundary vertex contributes non-trivially to both sides since at
most one of (p(v)—3) and (3 —p(v)) is positive.)

Certainly the most important generalized degree assignment is the ordinary
degree assignment. The properties of the degree assignment are sufficient for our
argument for alternating knots. We add further restrictions to the generalized
degree to bring it closer to the ordinary degree. A generalized degree assignment
is called sound if all of the following hold:

a) p(v)=4 for each interior vertex v;

b) p(D)=W(D)+ 3 for each face D;

¢) p(v)=2 for each boundary vertex v;

d) there is a bound B depending only on the knot such that p(v)>d(v)—B
for every vertex v.

If p is a sound generalized degree assignment on a conjugacy annulus then
the left side of the equation in Formula 2 is at most the number of boundary
vertices, i.e., W, +w,, the sum of the lengths of the boundary words. Each summand
of each term on the right must be non-negative (by the soundness condition).
We shall use these conditions to bound the number of relator regions in the
conjugacy annulus.

Let A be a conjugacy annulus which satisfies our conditions. We will define
a collection of bands and layers of 4 by induction. The zero-th band of A is the
inner boundary of A. The zero-th layer of A consists of all faces (sections) incident
on the inner boundary. For k>0, the k-th band of A is the outer boundary of the
subannulus of A consisting of the union of the zero-th through (k —1)-st layers of A.
The k-th layer consists of those faces incident on the k-th band but not belonging
to the union of the previous layers. A is said to have a proper k-th band if its k-th
layer is non-empty.

With each band of 4 we associate a set of words in a natural way. The words
are obtained by reading off the (signed) generator occurrences on the edges in
the band, reading in a counterclockwise direction from any starting point. All
of the associated words of the band are cyclically conjugate. Since A is a minimal
annulus, no distinct pair of proper bands can have an associated word in common.
For if they did we could delete the layers separating the bands and form a smaller
annulus with the same boundary words (W; and W,).

Let K be a prime knot with n crossings. Let A be a minimal conjugacy annulus
which attests to the conjugacy of words W; and W, in the group of K. We list some
conditions on the boundedness of certain numbers which we shall use below.

i) If S is a section of weight m in A then the perimeter of S (i.e., the number
of boundary edges of S) is greater than 4m/n and less than 3 nm. The lower bound
is a consequence of Lemma B while the upper bound results from the fact that S
cannot have more than (n— 1)m regions.

ii) The degrees of the vertices of A are all bounded by (w; +w;)+B. This is a
consequence of the definition of soundness and the fact that each term on the right
side of Formula 2 must be non-negative.
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iii) A layer of A is called a full layer if the two bands which form its boundary
are disjoint. Let Lbe a full layer of A and let B, and B, be its inner and outer bands
respectively. Let b; be the length of B,, i=1, 2. The ratio b,/b, is bounded both
above and below by recursive functions of n and k (where k=w, +w,). This can
be seen from i and ii.

iv) If L is a non-full layer of A then its inner boundary band must contain
some boundary edge of A. Thus the number of non-full layers of A is at most w,.

v) Since each term on the right of Formula 2 is non-negative no more than 2k
disjoint bands can lie on either vertices or faces of generalized degree greater
than 4.

From conditions i-v it is clear that one can obtain a recursive function h(n, k, r)
such that if 4 is an annulus for a knot with n crossings and the length of the
perimeter of A is k, then if A has r relator regions it must have at least h(n, k, r
consecutive disjoint bands no one of which lies on a vertex or face with generalized
degree greater than four under any sound assignment of generalized degrees.

Consider a subannulus of A4 consisting of the layers bounded by a pair of
bands in such a consecutive sequence. By soundness, every face and every interior
vertex of such a subannulus would have generalized degree four. If the generalized
degree assignment chosen were the degree assignment we would think of this as
part of a tiling of the plane by rectangles, hence we extend the usage and call such
an annulus a tiled annulus.

If we were able to bound the number of bands which could occur in such a
tiled annulus then by the above reasoning we could recursively bound the number
of relator regions in 4. We will show that if 4 is a minimal conjugacy annulus
we can usually show the existence of such a bound. In general we will use two
kinds of arguments. We will show that some sections of generalized degree four
cannot lie in a tiled annulus with arbitrarily many faces because the properties
of the dual of the knot require that it lie within some fixed distance of either a
boundary vertex or a vertex or face of generalized degree greater than four. Last
we will show that if a tiled subannulus has no such face it must have two bands
with the same associated word, contradicting minimality.

We shall not give the recursive functions required in any of the arguments
which follow. We shall just show that the number of consecutive bands in a tiled
subannulus is effectively bounded. It is clear that in any particular instance it is
a routine, if tedious, exercise to provide the recursive function required by an
analysis of the argument given.

7. On Prime Alternating Knots
We provide a proof of the theorem of Weinbaum [12] using our methods.

Theorem (Weinbaum). The conjugacy problem of any prime alternating knot
is solvable.

Proof. We choose our sound generalized degree assignment to be the ordinary

assignment of degrees to the faces and vertices. In the case of an alternating knot
it is immediate by definition that every generator is the union of two strings.
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Thus the primeness of the knot and the two coloring property of the complemen-
tary components require that every interior vertex have degree four. By Lemma B
every face of degree four has weight one so the number of possible faces in a tiled
subannulus is bounded by a recursive function of n. Because all vertices and faces
have degree four, each layer of the annulus must have the same number of faces,
hence each band in a tiled subannulus has the same number of edges. But the
number of words of any fixed length is a recursive function of n and that length,
and the number of bands is easily seen to be recursively bounded using the bound
on the ratio of the lengths of successive bands. Thus the conjugacy problem is
solvable.

8. Non-Alternating Knots

The principal reason that the proof of the theorem of the previous section does
not apply to non-alternating knots is that generators may be unions of more
than two strings. In this case the argument which shows that interior vertices
have degree four is neither applicable nor true. We try to find a generalized degree
assignment which is as close as possible to the degree assignment but does not
permit vertices of generalized degree less than four. It is convenient to define the
generalized degree assignment by a diagram.

To illustrate our procedure we will consider the knot numbered 9-48 in the
table of [8] (see Fig. 5—top). Henceforth in diagrams we will use subscripts
instead of full designations of relators. Thus “5” stands for Rs while encircled
numerals represent the associated crossings in the projection. Inverses are barred
(e-g., “57).

Below the knot projection are six pairs of diagrams labelled a-f. In each case
the lower member shows the dual of the upper. Vertex duals are partially dashed
for reasons which will be given below. Each of the diagrams illustrates a vertex of
(section) degree less than four. The vertices in a, b, ¢, d, and f have degree two,
that in e has degree three. The duals of a-¢ are simple closed curves, that in f is not.
Note that the dual of the vertex in f contains a simple closed curve which traces
the entire boundary of the component in which it lies. We say that this dual
curve loops in a component. Note that a vertex of degree four lies on a face of
weight greater than one if and only if its dual curve loops in a component.

One can see by inspection that a-e are the only vertices of degree less than four
which only lie on faces of weight one. (Note that the dual of such a vertex is a
simple closed curve which uses parts of relator dual circles in fewer than four
components and does not use a circle on the special crossing)

In our generalized degree assignment, soundness requires that an interior
vertex be assigned generalized degree at least four. Since the generalized degree
of a vertex is determined by the way in which the unit contributions of the edges
on the vertex are distributed, we must make use of two external interior edges
on each vertex of degree two and one on each vertex of degree three. In Fig. 5
it is clear that diagrams d and f are related by the loop in diagram f. In what
follows it will be evident that if we define our assignment for vertices on sections
of weight one the assignment may be extended naturally to all vertices of low degree.

In diagrams a—d two arrows point to edges lying on the center vertex. These
arrows indicate that the contribution which would have been made to the section
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Reidemeister Knot 9-48

Vertex of degree 2 not on section of weight 1
Fig. 5

in which the arrow lies by the edge at the head of the arrow is made instead to the
central vertex. In diagram e the arrow on the bottom vertex indicates that the
contribution which would have been made to that vertex by the edge joining it to
the central vertex is instead made to the central vertex. Thus, in each case the
central vertex has generalized degree four. The faces shown in a-d all have degree
six so the reduction gives them generalized degree four. The bottom vertex of
diagram e has a dual which cannot (as can be seen by tedious inspection) be
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completed to the dual of an interior vertex of degree less than five, so this reduction
is also safe. However, we must show that any face must have generalized degree
consistent with the soundness definition under this assignment.

Since simplification (see Lemma B) gives considerable leeway and many
extra boundary edges, it is not difficult to see that we need only treat in detail
faces of weight one. What we must show is that the edges bearing arrows are,
in effect, surplus to the sections to which they belong. By this we mean that the
dual boundary curve of the section must have four intersections with generators
in addition to those intersections dual to edges bearing arrows. In effect this means
that if a face has a dual boundary curve containing the solid portion of one of the
vertex duals in diagrams a-d then the boundary vertices on that portion cannot
be counted towards the generalized degree of the face. Since we need only consider
simple closed curves, inspection shows that under these restrictions there is no
face of generalized degree less than four.

Once we have chosen a sound generalized degree assignment we must examine
those sections of weight one which have generalized degree exactly four under the
assignment. These are the candidates to be faces in a tiled subannulus. Since
no internal edge may be a boundary edge of an interior face of A4, we restrict
attention to sections all of whose boundary edges are external edges.

Suppose that a generator g consists of a single string of the projection. If an
interior edge has its dual curves parallel to g then the curves must each lie in a
single component and the edge must be internal. Thus, if two relator regions
cancel along such a generator, they must be paired in any interior face to which
either of them belongs. For example, there could be no interior face containing
the region corresponding to Ry without the region corresponding to Re. Those
sections of generalized degree four which satisfy the minimality condition of
Lemma A and have no boundary edges whose duals intersect generators consisting
of a single string are called tiles. One can enumerate the tiles of a projection quite
easily; we have done it for our example in Fig. 6.

We shall distinguish a class of tiles called standard tiles. A tile is called standard
if it satisfies one of the following conditions:

i) It is a relator region.

ii) It is a union of regions corresponding to consecutively numbered relators
with its only interior edges having duals which are parallel to generators consisting
of single strings.

iii) It contains one region corresponding to each relator of the special Wirtinger
presentation. (The boundary word of such a tile is the inverse of the relator of the
full Wirtinger presentation which would be dual to the special crossing.)

The standard tiles of our example are shown at the top of Fig. 6. A consequence
of the condition on single string generators is the fact that every tile must be a
union of standard tiles of the first two types.

A tile cannot be interior to a tiled annulus if it has a vertex whose dual cannot
be completed to a closed vertex dual which enters at most four components in
addition to any loss due to vertices losing their edge contributions due to the
generalized degree assignment. In particular this completion cannot permit
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X-Dual of X
Standard tiles

¥

<)
Non-standard tiles
Fig. 6. Tiles for the knot of Fig. 5

the boundary edges on the vertex to have duals which lie in a single component
This property may be checked by careful inspection for any vertex.
In our example, the non-standard tiles satisfy:

Lemma. No non-standard tile for our example can occur as an interior face
of a tiled annulus.

Proof. We examine the four possibilities. In diagrams a and b of Fig.6 the
same vertex, marked o occurs. By examination of its dual we can easily check that
it cannot be part of an interior vertex of degree four, hence cannot be an interior
vertex of a tiled annulus. In diagram c the same remarks may be applied to f.
After elimination of the first three we see that vertex y of diagram d cannot occur
as a vertex on four tiles of remaining types.

'In a tiling consisting of standard tiles it is easily seen that the faces may be
arranged in only one way to obtain vertices of degree four. Each tile must be

289
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ose 1 2 3 4 5

Fig. 7. The standard tiling of our example

" bordered on two sides by copies of itself and on the other two sides by its numerical
predecessor and successor —as shown in Fig. 7.

The tiling shown in Fig. 7 is called the standard tiling corresponding to the
projection. It is immediate that if any subannulus is tiled by this tiling all of its
bands have the same length. Moreover, depending on the manner in which the
tiles are “laid” either every band has the same associated word or each band has
an associated word which is the same power of some generator. Thus the tiled
subannulus can have no more than seven bands. The above analysis proves the
following theorem.

Theorem. Knot 9-48 of Reidemeister’s table is a non-alternating knot with
solvable conjugacy problem.

The technique used in this section has been applied to other knots with
similar results. In the next section we will show how the procedure may be applied
to an infinite class of knots. We conclude this section by one further example.

Theorem. Little’s eleven-crossing non-alternating knot (Fig. 1) has solvable
conjugacy problem.

Proof. We will give diagrams for the generalized degree assignment and the
elimination of non-standard tiles. The procedure will be essentially the same as
in the previous theorem. The generalized degree assignment is described by Fig. 8.

The one new feature arises in the elimination of three of the non-standard
tiles. In these cases we cannot guarantee that any particular vertex has degree
greater than four but we note that if both vertex y and vertex ¢ are interior vertices
then at least one must have degree greater than four.

In Little’s knot there is only on€ non-standard tile (see Fig. 9) and in this case
the vertex a cannot have degree four. Thus the theorem is proved.

9. Double Cable Knots

A cable knot of type (p, q) is a curve on the surface of a non-trivially knotted
torus which cuts each meridian in p points and each longtitude in g points. We shall
call a knot a double cable knot if it is a cable knot of type (2, 1) on a torus which is
itself knotted by a prime alternating knot. A minimal presentation may be obtained
by taking a pair of parallel copies of a minimal projection of the alternating knot
of the torus and connecting them by a single crossing (see Fig. 10). It is convenient
to take this “joining” crossing as the special crossing to make our treatment
uniform. '
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Fig. 10. Double cable trefoil
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Theorem. The conjugacy problem of any double cable knot is solvable.

Proof. We observe that every crossing of a double cable knot lies on a single
string generator (i.e., a generator consisting of a single string). Let a be a single
string generator on the special crossing. By definition of dual, a cannot be the
label on an interior edge of our conjugacy annulus; hence any face with an edge
labelled by @ must be a boundary face. As before, the simplification procedure
of Lemma 2 permits us to restrict attention to sections of weight one in defining
and checking our generalized degree assignment. In particular there can be at
most w, + w,, sections witha asa boundary edge. Hence, if we ignore these sections
in the requirement that a face must have generalized degree at least four, the
recursive bound obtained from Formula 2 will still be applicable.

We will call two crossings paired if they are joined by a single string generator.
In our example the crossings (2i—1,2i), i=1, 6, are paired. Two crossings are
called cross paired if they are adjacent crossings on one generator and also lie
on a pair of parallel generators of the two parallel copies of the knot of the torus
used to obtain the projection. In our example the crossings (i, i+6), i=1,6, are
cross paired. Neither of the two definitions is to be applied to the special crossing.

We define the collapse of a double cable projection to be the identification of
the two parallel copies of the knot of the torus used to define it and the consequent
disappearance of the special crossing and the identification of paired and cross-
paired crossings.

Let C be the dual boundary curve of a section of weight one. Then C is a
simple closed curve in the plane of the projection 7. The effect of the collapse of
7 on Cis as follows. If any crossing of a set of four crossings linked by the pairing
and cross pairing bears a relator circle then the image crossing bears a circle.
The interior edge duals between circles not so linked in the preimage parallel
the image of the generator on which they lay in the preimage. This is illustrated
by Fig. 11.

_rh _ N
|/ . N L .
e e -\

N | N

Fig. 11. The effect on boundary curves of a collapse

It is clear from examining the projection of a double cable knot that every
vertex of degree less than four has degree two, and involves paired or cross-paired
crossings. Fig. 12 gives some examples from our double trefoil.
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The assignment we choose just assigns the contribution of one edge of each
face to the vertex. This means that one of each pair of paired or cross-paired
edges changes its contribution from the face to the vertex. We will use the definition
of the collapse to show that this type of assignment is sound.

Call a set of four crossings closed under pairing and cross pairing a complex.
If § is a section of weight one such that there is a complex H with no relator
dual to a crossing of H corresponding to a region of S then the collapse of the dual
boundary curve of § must have one crossing in its interior and the collapse of H
in its exterior. Thus it must intersect the collapse of the projection in at least
four points. But at least one preimage of each such intersection point is an edge
dual which has not changed its contribution from the face to a vertex, since such
a contribution occurs only if both members of a paired or cross-paired set of edges
occurs in the boundary of the face.

Suppose, on the other hand, that at least one member of every complex is
dual to a relator region of the section. From our previous remarks we know that
relator Ry which lies on generator a cannot supply a relator region to the section.
Thus not every complex is represented by four relator regions in S. Now we re-
define the effect of a collapse on a dual boundary curve so that a crossing of the
collapse is interior to the image only if the entire complex is interior ro the pre-
image. In this way we show that the section has degree four under the generalized
degree assignment if any entire complex is contained in the interior of its dual
curve. If neither of the cases above holds, the number of intersections is large and
a simple counting argument suffices.

One can easily see that the only possible tiles are the standard tiles, sections
whose relator regions are dual to all of the crossings of a complex, and sections
of perimeter eight whose relator regions are the duals of a union of complexes.
The collapse argument shows that no other union of sections could be an internal
face of generalized degree four. But in any of these faces of degree six or eight the
requirement of generalized degree four for an interior tile of a tiled annulus forces
vertices of degree two in such a way that one can easily see that all bands must
have the same length. But this suffices to prove the theorem.

It appears that the approach of this paper is applicable to more general cable
knots and to torus knots but the proofs seem more complicated. One would like
to find a uniform manner to apply the argument without as great a reliance on
special arguments but so far attempts at finding such a uniform method have
proved unsuccessful.
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