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A Generalization of Bohman-Korovkin’s Theorem

GUNTER FELBECKER and WALTER SCHEMPP

1. Introduction

Let I=[0, 1] be the compact unit interval of the real line IR and let us
denote by %r(/) the real algebra of continuous real-valued functions on 1.
We provide ég(I) with the topology of uniform convergence on I induced
by the Cebysev norm

G2 [f 1o =sup /().

Then the Weierstrass approximation theorem states that the monomials

(restricted to 1)
{Iax x"$veN}

form a total subset of the real Banach space ég(I).

Nowadays numerous proofs of this fundamental theorem are available. In
addition to general functional analytic methods (for instance, methods making
use of results from the theory of Laplace transform and from complex function
theory combined with the extension principle of Helly-Hahn-Banach or ideas
which are related to the generalization of the Weierstrass approximation
theorem by M.H. Stone) there are various constructive methods. To these
latter ones we should reckon the most general known method for generating
approximations, i. e. the technique of smoothing a given function by convolving
it with a suitable kernel (“regularization methods™). For a detailed account
of this circle of ideas we refer to Shapiro [14]. A concise survey including
further references will be found in Todd [15].

Among the constructive approaches to the Weierstrass approximation
theorem the most elementary one employs the Bernstein polynomials

Buf= ¥ f(+)bus @z (

0=<k=n

~—

constructed for any given feIR! by means of the positive functions

b,: Isx (") *(l—xy-k  (0<k<n). )

k
It is based upon the well-known fact that for any prescribed function fe%g(I)
the sequence (B, f)n>1 of polynomials converges uniformly on I to f. See
Bernstein [1] and, for example, the monograph by Lorentz [9].
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As pointed out by Bohman [2] and Korovkin [7, 8], a thorough examina-
tion of the Bernstein approximation process exhibits the remarkable fact
that the linearity of the mappings

feB,f, (zl)

of %g(I) into itself, together with their positivity relative to the natural lattice
structure of the real algebra @g(I), and the uniform convergence on I of the
sequence (B, ),z towards f merely for the following three monomials

fiIax>x", (v=0,1,2)

are sufficient to ensure the uniform convergence on I of the sequence (B, /),
to f for any given function fe®%gr(l). Employing the identical bijection
id,: Isx > x, the Bohman-Korovkin result can be formally stated as follows:

Theorem 1. Let (L,),>; be a sequence of positive linear mappings of the
ordered Banach algebra ég(I) into itself. Suppose that

lim || L, (id}) —idj[ , =0
for v=0, 1, 2. Then we have
lim | L,(f)=f 1l =0
for all functions feGg(l).

Taking this statement for granted, Bernstein’s proof of the Weierstrass
approximation theorem requires only a short calculation. See, for instance,
Cheney [6] or Meinardus [10]. In addition, Theorem 1 has various applica-
tions to approximation problems. For example, it yields a simplified proof of
Fejér’s result concerning approximation by means of Hermite interpolation
with derivatives controlled at the Cebysev nodes. Moreover, by the positivity
of Fejér’s kernel, the analogue of Bohman-Korovkin’s theorem for the one-
dimensional torus group T implies as an immediate consequence the well-
known result on Cesaro summability for the Fourier expansion of functions
fe%r(T). See Cheney [6] and particularly Korovkin [8], where further
applications along these lines will be found.

An obvious generalization of Bernstein polynomials can be obtained by
forming for any two multi-indices k=(k;); < j<m€N", n=(n)<jem€N" 151
k<n, the tensor product

by= & bn,»k,—
15jsm
of the functions (2) and modelling by complete analogy with (1) the definition
of the polynomials B, f for any real-valued function f on the compact unit
hypercube I" of R™. Furthermore, for an adaptation of the Bernstein procedur®
to vector-valued functions we refer to Tucker [16].

However, the definition of Bernstein polynomials for real-valued functions

on the compact standard simplex of R™ sketched by Lorentz in Chapter II of
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his book [9] seems to be more powerful. It has the advantage of being closely
related to those elementary considerations of probability (concerning the
binomial distribution) which serve usually to motivate the definition (1) of
classical Bernstein polynomials. See Todd [15]. Moreover, it is the natural
starting-point for an interesting generalization of Bernstein polynomials to
spaces of probability measures on compact topological spaces which has
been given and extensively discussed in Schnabl [11-13]. The convergence
theorem proved by Schnabl [11] represents a translation of the familiar
technique into the framework of his general theory and disregards the type
of argumentation due to Bohman and Korovkin.

It is the aim of the present paper to establish an extension of Theorem 1
which covers the generalized Bernstein polynomials in the sense of Schnabl.
This will be done in Theorem 2 of Section 3 after having set down in Section 2
the concepts we shall deal with. Finally, in Section 4 a convergence theorem
will be deduced from Theorem 2 which implies as a special case Schnabl’s
approximation theorem mentioned above.

Concerning the general notions and terminology needed from the theory
of topological vector spaces and functional analytic integration theory, we
refer to Bourbaki [3-5].

2. Bernstein-Schnabl Functions

In the sequel let us denote by T a compact topological space. As usual in
analysis, we assume that the notion of compactness includes the Hausdorff
separation axiom. We endow the real vector space @g(T) with the topology of
uniform convergence on T and denote by

M(T)=%wr(T)

the topological dual of the locally convex topological vector space @g(T).
It will be convenient to denote the canonical bilinear form associated with
the topological duality (¢(T), .#&(T)) by

Er(T) x MR(T)(f, WSy = TIfdu-

Thus gx(T) represents the vector space of the real Radon measures on T
We shall assume that Mg (T) carries the vague topology, which means that
the vector space .#(T) is equipped with the weak topology o (Ar(T), éx(T)).
The canonical (algebraic) vector space isomorphism of éx(T) onto the topo-
logical dual Ag(T) of its weak dual #x(T) will be denoted by

fefinsL .

If we introduce the pointed convex cone .#, (T) in .4g(T) consisting of the
positive Radon measures on T, then

M (T)={pe M, (T)i1y, uy=1}
5 Math.z, Bg. 127
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stands for the set of all Radon probability measures on T. We shall pro-
vide .#'(T) with the relative topology induced by the vague topology
o (My(T), 6x(T)). The compact topological space obtained in this way will be
designated henceforth by X. It is well known that X represents a (vaguely
compact) base of the convex cone .#, (T). With respect to the Cebysev norm
Il Ga(X) will be considered as a real Banach algebra.

For any natural number n>1 let us denote by T" the n-fold cartesian
product performed with T itself and equipped with the product topology:

T'= T, (;=T1=j=n).

X
1<jsn ’

1A

Furthermore, let P=(p,;),>1,j>1 be a lower triangular stochastic matrix, i.e.
an infinite real matrix the elements of which have the following properties:

pn'goa (nglv.,gl)

J

pnj=0’ (j>n) (3)
Y pa=1, (nz1).

jz1
If we denote for any teT by geX the Dirac measure on T placed at the
point ¢, the application

T, p: T35 jzn lenj e,€X )
Jz

defines a vaguely continuous diffusion of T" into T having the norm ||z, p| = L.
Thus, the mapping 7, p assigns to each n-tuple of elements of the compact
space T a discrete probability measure on T,i.e. an element of X belonging
to the convex hull of the set of extreme points of the base X.

For any Radon measure ue.#g(T) let us denote by

po'= ® u;, (i=p1=j<n)

1Sjsn

the n-fold tensor product measure on T" performed with y itself. Notice that

the mappin
PO M (Tyap+— p® e M (T"

is continuous with respect to the vague topologies. Finally, we shall denot
by 7, p(1®") the image of the measure u®" under the continuous mapping
7, p: T"— X defined in (4).

Definition. Let the function Fe%g(X) be given. For any natural number
n=1 the continuous mapping

B, »(F): X3ur> CF., p(u®)) = [ Fdm, p(u®")eR
X

defined on the compact base X of the convex cone .#, (T) is called the n-th
Bernstein-Schnabl function of F with respect to the matrix P of masses.
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In the special case that all nonzero elements in the n-th row of P are
supposed to be equal, i.e. if

P=n  (1Z11<j<n) ©)

we obtain Schnabl’s original definition [11].

The mapping F > B, p(F) from %g(X) into itself is plainly linear. If we
endow the real Banach algebra %R(X) with its natural lattice structure then
B, p: Gr(X)—GRr(X) becomes a positive linear map. For this reason it is
automatically continuous.

In the case that T reduces to the space {a, b} consisting of two (distinct)
points and T is equipped with the discrete topology, then .#g(T) is the real
vector space spanned by the unit point masses {e,, ¢,}. Consequently, #g(T)
is topologically isomorphic to IR?. Therefore the base X of the cone .# +(T)
is homeomorphic to the interval I and the Banach algebras %x(X) and %g(1)
can be identified.

3. The Generalized Theorem of Bohman-Korovkin
We shall adhere to the notations introduced in the previous section. In
addition, for each function fe%g(T) let us denote by
I=f1Xe%(X)
the restriction of the continuous linear form fe My(T) to the base X of the
convex cone .#, (T). Then our generalization of Theorem 1 reads as follows:

Theorem 2. Let (Ly)az1 be a sequence of positive linear mappings of the
ordered Banach algebra gx(X) into itself. Suppose that

Tim L (f*) =/l =0
Jor each fe%x(T) and v=0, 1,2. Then we have
lim |L,(F)—F|,=0

Jor every function Fe%g(X).

Proof. Each continuous mapping F: X — R is uniformly continuous with
fespect to the natural uniform structure on X inducing the relative vague
topology and the canonical uniformity on IR. The vague topology, i.e. the
topology on Ag(T) of pointwise convergence, arises from the spectrum
U/ fe%p(T)} of seminorms on (). Consequently the uniform structure
on X will be generated by the spectrum

{X x X3(u, A [Kfin—2)| i fe6r(T)}

of pseudo-metrics.
S.
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Let n>0 be given. It is possible to select a family of k functions (f}); <<,
in the space %g(T) having the property that the relations (py, #,)€X x X and
Y < f;, i —ppp* <1 imply the inequality

1Sjsk
|F(uy) = Fuz)| <n.

From this fact we infer that for all pairs (1, A)€ X x X the following estimate
IF)— F)l<n+2-[Flo- Y <{fiu=2A)*

1=jsk

is valid. If 1,=id%: x+>1 denotes the unit element of the Banach algebra
%r(X), then for all measures e X the inequality

[F—F()-1l<n - 1x+2|Fllo- Y (7 =2/)-f+7 () 1)
152k
holds. Taking into account that |L,(G)| < L,(|G]) for each function Ge%g(X),
we obtain for all natural numbers n=1 the inequality

Lo (F)—F - LI <7 - Ly(L)+2 [ Fllo- 2 (Lo (f) =2/ L) +17 La(1y)

1=j=k

so that
| Ly(F)=F - Ly(1)ll o =71 - 1 Ly(Ix)l o + 2 I Fll o - 2 Ny
15jsk

For brevity we have introduced the following quantities with indices n=1 and
1sjsk:
N,;=ILa(f) =2/, La( )+ Lol
S ILa(fA) PN+ 20 fillo - I La () =Fill o+ 1 /71 o I L (L) — Lxll o -

From the hypotheses we infer that we have lim Y, N,;=0. Hence, by virtue

n—© 4 i<k

of the fact that # was an arbitrary strictly positive real number, the estimates

IL(F)=Fllo <1 1Lyl 0+ 21 Fllo - Y NajtIFlleo - 1Ln(10) =~ 1xll

1<jsk

SN++1F) - 1L ()~ 1xll o +21Fllo 2, N

1sj=k

combined with the hypotheses establish the statement. —

4. A Convergence Theorem
A straightforward application of the foregoing theorem yields the following
convergence theorem valid for Bernstein-Schnabl functions:

Theorem 3. Let P=(p,)),»1,j>1 be an infinite lower triangular stochastic
matrix. Suppose that the elements of P satisfy the condition

lim ) p?,=0.

n— o ng
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Then we have
hm ”Bn,P(F)—F"ao=0

for each function F e €g(X).

Proof. According to the properties of the mappings (B, p),; of %g(X) into
itself, which we have mentioned in Section 2, and in view of the fact that

B, p(M=/" (v=0,1)

for n21 and all functions fe%R(T), it is sufficient to consider the case v=2.
It can be easily found

f?o T, p: T"9(5j)1§j§n*_’.lefjfz(tj)‘l‘ lpnjpnkf(’j)f(fk)-
jz

>
1,k=
j¥k

Thus we obtain the following representation:

Bn.P(fZ): XB/I,?—’ <f2’ nn‘P(#®")>: .le3j<f27 #>+ Zk lpnjpnk<f; #>2
jz 2

jzlkz
i*k

By the properties of the elements of P listed in (3), we conclude that
1Ba p(F) =21 =(X P2 1/ * =1l
jz1

holds for all integers n= 1. This equality establishes the statement. —

In the special case when the nonzero elements of the matrix P are chosen
as indicated in (5), Theorem 3 reduces to the approximation theorem due to
Schnabl [11].
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