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1. Introduction. Our terminology here will agree with that in [/]. In parti-
cular, a compact space X is a Hausdorff space with the property that from any
open covering of X, one can extract a finite subcovering. By a compactification
of a space X, we mean a pair («X, #) where o X is compact and 4 is a homeo-
morphism from X onto a dense subset of o X. Therefore, in a certain sense,
one compactifies a space X by adjoining a space K to a homeomorphic image
of X in such a manner that certain prescribed conditions are satisfied. In this
paper, we consider the problem of determining possibilities for the space K.
More specifically, we consider the following question: “Given a space X and
a space K, does there exist a compactification (« X, #) of X such that « X —h(X)
is homeomorphic to K?’ It is shown that the answer is affirmative if X is
locally compact, normal and contains an infinite discrete closed subset and
K is any Peano space (i.e., compact, connected, locally connected, metric
space). Thus, in particular, if X is any locally compact, noncompact metric
space and K is any Peano space, there exists a compactification (¢ X, ) of X
such that « X—A(X) is homeomorphic to K.

In concluding the introduction, we take the opportunity to express our
appreciation to the referee for his valuable suggestions.

2. As is customary, we will use the symbol X to denote the Stone-Cech
compactification of a completely regular space X. We will assume X is actually
a subspace of fX. Let K be any Hausdorff space. It follows from Theorem
6.12, p. 92 of [2] that if there exists a compactification (x X, /) of X such that
aX—h(X) is homeomorphic to K, then K is a continuous image of fX—X.
The converse, however, is not true. To see this, let X be any completely regular
space which is not locally compact and let K be the space consisting of one point.
Then K is a continuous image of fX — X but there exists no compactification
(o X, h) of X such that a X—h(X) is homeomorphic to K since X does not have
a one-point compactification. For locally compact spaces, however, the
converse does hold and we have the following:

Theorem (2.1). Suppose X is locally compact and K is Hausdorff. Then there
exists a compactification (X, h) of X such that a X —h(X) is homeomorphic
to K if and only if K is a continuous image of fX—X.

Proof. As we observed previously, the necessity of the condition is a conse-
quence of theorem 6.12, p. 92 of [2] so we will prove only that the condition
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is sufficient. Suppose, then, there exists a continuous function f mapping
BX—X onto K. There will be no loss in generality if we assume X and K are
disjoint. Define the mapping g from X onto XU K by

g(x)=x if xeX
and

gx)=f(x) if xepX—-X.

Let R be the equivalence relation on X which is induced by g (i.e., (x, y)eR
if and only if g(x)=g(y)) and let ¢ denote the canonical mapping from X
onto the quotient space fX/R which we will hereafter denote by aX. For a
subset H of BX, we will let Ry, denote the equivalence relation which R induces
on H. Furthermore, if a subset H of fX has the property that xe H and
(x, y)eR implies ye H, then H will be referred to as an R-saturated subset.

Since X is locally compact, X is an open subset of X and since X is R-satu-
rated, it follows from Corollary 1 [Z, p. 46] that the restriction ¢* of ¢ to X
which maps X onto ¢(X) is a homeomorphism. Similarly, since 4=X—X
is a closed subset of fX and is also R-saturated, the same corollary implies
A[R 4 is homeomorphic to ¢ (A4). Furthermore, since the function f mapping A
onto K satisfies c) of Proposition 8 [/, p. 44], it follows from a) of that same
proposition that 4/R, is homeomorphic to K. Thus ¢ (4)=aX—@*(X) is
homeomorphic to K.

If follows easily that ¢*(X) is a dense subset of o X. Now let us show that
aX is compact. According to Proposition 8 [/, p. 121] it is sufficient to show
R is closed and Proposition 10 [/, p. 62] assures us that R is closed if each
equivalence class M of fX has a basis of R-saturated neighborhoods. Since
X is open in BX, it follows immediately that a class of the form g~!(g(x)),
x in X has such a basis. Now suppose xe 4 and let F=g~!(g(x)). Then Fis a
closed subset of 4 and hence also a closed subset of X. Let U be any neighbor-
hood of Fin BX. Then Un A is a neighborhood of Fin A and it follows that
[«(27"(g([4(UNA)))) is an R -saturated neighborhood of F in 4 which is
contained in U 4. There exists an open subset U’ of fX such that U' n A4 =
(4(g7"(g(4(UNA)))). Let V=UNU'. Then Fc¥V<U and since VnAd=
U’ N A is R 4-saturated, it follows that V is R-saturated. Thus, a class of the form
g '(g(x)), xe4 also has a basis of R-saturated neighborhoods. This proves
that o X is compact and hence that (¢ X, ¢*) is a compactification of X with
the property that « X —¢*(X) is homeomorphic to K.

Before stating the next result, we recall once again that a compact, connected,
locally connected, metric space is referred to as a Peano space.

Theorem (2.2). Suppose X is a locally compact, normal space which contains
an infinite, discrete, closed subset. Then for any Peano space K, there exists a
compactification (a X, h) of X such that « X—h(X) is homeomorphic to K.

Proof. Since X contains an infinite, discrete, closed subset, we can extract
from this a countably infinite subset N which must necessarily also be discrete
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and closed. Topologically, N may be regarded as the space of natural numbers
with the discrete topology. Let f be any bounded, real-valued function on N.
Since N is a closed subset of X and X is normal, it follows from the Tietze
Extension Theorem that there exists a continuous extension f' of f which is
also bounded and whose domain is all of X. Then f’ can be continuously ex-
tended to a function /'’ whose domain is X. Note that the restriction of /"
to clgx N is a continuous extension of f. Therefore, clgx N is a compactification
of N with the property that every bounded real-valued function on N can be
continuously extended to a function on cl;x N. But these properties charac-
terize BN so we conclude cly;x N=BN. Since no point of X—N belongs to
clgx N, it follows that

BN—N=[clyxN]-NcfX—X.

From 6.10 (a) p. 91 of [2], we see that S N— N contains a copy of fN. Thus,
there exists a countably infinite, discrete space Y such that fY<fX—X. Let
g be any function mapping Y onto the rationals in [0, 1]. Then g is continuous
on Y and hence has a continuous extension g’ which maps Y into [0, 1].
Since BY is compact, g'[B Y] is compact and must therefore be all of [0, 1].
Once again we appeal to the Tietze Extension Theorem and conclude that g’
can be continuously extended to a function g’’ whose domain is fX—X.
Now let K be any Peano space. By the well known Hahn-Mazurkiewicz
Theorem, there exists a continuous function k mapping [0, 1] onto K. Therefore,
the composition kg’ of k and g is a continuous mapping from f X — X onto K
and the desired result now follows from the previous theorem.

Since, in a metric space, countable compactness is equivalent to compact-
ness, any noncompact metric space must contain an infinite, discrete, closed
subset. Since, in addition, every metric space is normal, the following corollary
is a consequence of Theorem (2.2).

Corollary (2.3). Let X be any locally compact, noncompact, metric space and
let Y be any Peano space. Then there exists a compactification (X, h) of X
such that « X —h(X) is homeomorphic to K.

In closing, we make a few remarks about Theorem (2.2). There are three

conditions placed on the space X in the statement of Theorem (2.2):
(i) X is locally compact,

(ii) X is normal,

(iii) X contains an infinite, discrete, closed subset.

1f any one of these conditions is deleted from the hypothesis of Theorem
(2.2), the resulting statement is not true. For example, the space of all ordinals
less than the first uncountable ordinal [2, p. 72—76] satisfies conditions (i)
and (ii) but not (iii). Its only compactification is the one-point compactification
and thus the conclusion of Theorem (2.2) does not hold for this space.

The Tychonoff Plank [2,p. 123 —125] is an example of a space which
satisfies conditions (i) and (iii) (the “right edge” is an infinite, discrete, closed
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subset) but not (ii). As in the previous example, its only compactification is the
one-point compactification and the conclusion of Theorem (2.2) does not hold
for this space either.

Finally, suppose X is not locally compact. Then for any compactification
(ax X, h) of X, h(X) is not an open subset of aX. Therefore, « X—h(X) is not
compact and thus cannot be homeomorphic to any Peano space.
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