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Tauberian constants for general triangular matrices
and certain special types of Hausdorff means

By
SORAYA SHERIF

1. Introduction. We consider the transformation

(1-1) tn= Z cn,ksk ("é()),
k=0

where
sk=a0+a1+"'+ak.

In various special cases, it has been found that theorems of the following
general type hold. We suppose that p, n are related in an appropriate way
(usually the assumption is that p/n—o as n—»co where «>0 is a constant).
Suppose that

(1.2) na,=0(1).
Then there is a constant A such that

(1.3) limsup |s,—t,|<Alimsup|na,]|.

n—*co n=*oo
There are also analogous results in which (1.1) is replaced by a sequence-to-
function transformation

(14 D(u)= i c(v) sy .
k=0

It is, of course, desirable that the best possible value of the constant 4 should
be determined.

Theorems of this type were first considered by HADWIGER [6], and have
since been investigated by various authors; see for example AGNEW ([3], [4])
and TENENBAUM [/I]. In particular, the case in which (1.1) is a Hausdorff
transformation has been considered by JAKIMOVSKI [8].

Some similar theorems have been obtained with (1.2) replaced by the
weaker condition

(L5) 2w=0(1),
where we write

see, for example DELANGE [5], RAJAGOPAL [9] and SHERIF [/0].
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In §2 of the present paper, we consider the case in which (1.1) is any
regular triangular transformation satisfying certain quite weak restrictions.
Suppose that «>0, and that p is an integer valued function of » such that
p/ln—a as n—oo. We show that if (1.5) holds, then

(1.6) limsup |s,—1,| < D(c) lim sup | y,|

where D(c) is a Tauberian constant which will be investigated.

In § 3, we shall then show that, in certain special cases, the results obtained
can be simplified; and in particular, we shall consider D(x) for certain classes
of Hausdorff transformations.

A new feature which arises is that in the case «=1 we must distinguish
between the case in which p=n and that in which p/n—1 but p=%n for all
sufficiently large n. That such a distinction is sometimes necessary is shown
by the trivial example in which (1.1) reduces to t,=s,. If p=n, then 5,—1,
is identically zero; but if p=n—1, then s,—¢, need to tend to zero under
the hypothesis (1.5) (which differs in this respect from (1.2)).

I am very much indebted to Dr. B. KUTTNER for his valuable suggestions for improvements
to present this paper.

2. Throughout this paragraph, we will write

p—1 1 v—1 1 p—1
Z = cn,k—cn,v + 1+— ch,k_cn,k +
v=1| "V k=0 P x=o
n 1 n
(21) An,p= + T Z cn,k+cn,v fOl' (Pén):
v=p+1| Y k=0,

V-

1 P
%Zc,,,k—c,,,v+ Y %+1+o(1) for (p>n).

k=0 v=n+1

M=

<
I
-

Theorem 2.1. Suppose that

2.2) Y =1,
k=0
(2.3) 2 lenil
k=0
bounded,
2.4) max |c, /=0 as n-—oo.
0<kzn-1

Suppose that (1.5) holds. Let «>0, and let p be an integer valued function of
the integer n such that p/n—a as n—o0; in the case a=1, we suppose further
that p+n for sufficiently large n. Then

(i) (1.6) holds with
(2.5) D(x)=limsup 4

n—*o0

n, p>
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this limit depends only on o, and not on the particular function p chosen. This
result is the best possible in the sense that equality can occur in (1.6).

(ii) If «>1, then
(2.6) D(@)=D(1)+loga.

(iii) If p=n, then a similar result holds, but with D(1) replaced by D(1), where

27  D()=limsup 4, ,=limsup {4, ,—;+|1—c, | —|cnal—1}.

n—ao n—ow

For the proof of Theorem 2.1, we require the following lemma.

Lemma 2.1. Suppose that the transformation (1.1) has the properties

@) ¢, x—0 as n—oo for any fixed k,
(ii) Y len x| is bounded.
k=0

Let

An= z |cn,kl

k=0

and let

A=limsup 4,.
Then for any bounded sequence {s,}
2.8) limsup |¢,|< A limsup |s,|.

This result is the best possible; that is to say {s,} can be chosen so that there
is equality in (2.8).

This result is essentially due to AGNEW ([2], Lemma 3.1). AGNEW gives the
analogous result for sequence-to-function transforms but only obvious modi-
fications of AGNEW’s argument are required.

Proof of Theorem 2.1. We have

an=(1+1/")}'n_yn—l (n;l)-
Hence
2.9) Sa=ao+ 2, V[V+Vn (nx1).
v=1
Thus, by (2.2)
n n k
t,=ap+ E Cu,y vt Z Cp kz _z_v_
v= k=1  v=1V

(2.10)
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From (2.9) and (2.10) (using (2.2) to obtain a slight modification) we have
an expression for s,—1,,

p—1 1 v—1 1 p—1
VZ:[YV( z cn, cn,v)'*')’p {1+_ gocn,k_cn, p}_
(211) sp_tn= Z yv<l zcn k+cn v) for (Pé"),
v=p+1
" 1
y yv<72 Cnok—Cn, v>+ E ——+y,,< —> for (p>n).
v=1 k=0 v=n+1 p

Part (i) of the theorem will clearly follow at once with the aid of Lemma 2.1
once we have proved that the limit (2.5) depends only on a. If p, ¢ are two
integer valued functions of n with p/n —a, g/n—a, then p—g=o(n). It is thus
enough to show that if p—g=o0(n), g=cn (where ¢ is a positive constant),
p+n, ¢=n, then
(2.12) A, p— A4, 0
as n—oo.

There is clearly no loss of generality in taking p>gq. If p>g>n, then (2.12)
follows at once from the second equality of (2.1), next suppose that n>p>gq.
We deduce from (2.4) that

5

v=q

as n—oo. It therefore follows from the first equality of (2.1) that
An.p nq"ll n,pl+|cn,q|_|1'“cn,q|—lcn,pl+0(1)’

and (2.12) now follows with the aid of (2.4). In order to dispose of the case
in which p>n>g, it is enough, in view of the cases already considered, to
take p=n+1, g=n—1. By an argument similar to that given above, we
deduce from (2.1), with the aid of (2.3) and (2.4), that

An,n+l'—An,n—1_’0

T cu

V k=0

as n—oo. The proof of (i) is now completed.

Part (ii) of the theorem now follows at once from the second equality of
@.1).

Part (iii), apart from the second half of (2.7), follows at once from (2.11)
and Lemma 2.1. Further, again arguing as above, we find that
(213) Au,n—An,n—1=|l—cn,nl—lcn,nl—l‘l"o(l)’
and this completes the proof of the theorem.

Theorem 2.2. Suppose that the conditions of Theorem 2.1 hold.

(i) If, further
(2'14) Oécn O_S_cn,lécn,2§'"§cn,n’
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then
(2.15) D(x)=D(1)+1log(1/x) (x21),
and

D(1)=limsup B,,
where o

n v—1
(2.16) B,=Y, {c,,_v——l- Y c,,,k}+1.
0
(i) If, further
(217) cn,OZCn,lgcn,zg'“gcn,ngo:

then for p<n, the quantity A, p defined by the first equality of (2.1) can be
written

(2.18) A, p= 4
¢, +log (;—)+o(1) .

Thus for a<1, D(a) is given by (2.5), where A, , is defined by (2.18).

Proof of Theorem 2.2. Under the hypothesis (2.14), the term inside the
modulus in the last sum in the first equality of (2.1) can be written

1 1 v—1
cn,,+7—7k§0cn,k.
So
A —Zn:{c ——l—yilc }+ ﬁ l+1+o(1)‘
(2.19) woEl vt v=p+1 V ’

=B,+log(1/x)+0(1),

where B, is defined by (2.16). On letting 7 — oo (2.15) follows from (2.5) and
(2.19). Under the hypothesis (2.17), the term inside the modulus of the first
sum in the first equality of (2.1) is positive. So,

P 1 v—1 n 1 1 V=t
A"1P= z (—_- z c",k_c'l. V)+1+0(1)+ Z (c"’v+_-—_ Z cn,k)'
v=1\Y k=0 v=p+1 v V K=o
n n 1 v—1
An,p=2 _Z+lcn,v+ Zl _v‘kz:ocn,k_
2.20 R - =
( ) n 1 v—1 n 1
=2 Y —Yeaut Y —+o(l).
v=p+1 V k=o v=p+1 v

Hence, on letting n— o, (2.18) follows from (2.20).
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3. Definition. Let {u,} (n=0) be a fixed sequence of real or complex
numbers. The Hausdorff transform {z,} of a sequence {s,} by means of the
fixed sequence {u,} (or, in short, the [H, p,] transform) is given by

(3.1) t,=Y (:)(A"—"y,) s, for (n=0),
v=0
where, for p, g>0,
14
(3‘2) Ap Hq= Zo(_l)r(l:)”q+r'

Necessary and sufficient condition for a [H, u,] transformation to be
regular, that is, that it will transform each convergent sequence to a conver-
gent transform having the same limit, were given by HAUSDORFF (see HARDY
[7], Chapter XI).

These conditions are the following:

3.3) B(?) is of bounded variation in 0=t<1,
(3.4) BO)=40+)=0, BM)=1,
(3.5) U= j}t"dﬂ(t) for n=1,2,....

0

Further properties of the Hausdorff methods have been investigated by
AGNEW [I].

Theorem 3.1. Suppose that (1.1) is the regular Hausdorff transformation
given by (3.1)—(3.5); suppose also that either (2.14) or (2.17) holds; the con-
ditions of Theorem 2.1 are then necessarily satisfied. In the case in which (2.17)
is assumed, we make the further assumption that B(t)/t is integrable in (0, 1).
Then under the condition (2.14)

(3.6) D(a)=2—-j£§—tldt+log<%> for (2=1),

and

(3.7 D()=2p(—1)— fﬂft—)dt.

Under the condition (2.17), ’

(3.8) D(a)=2(1—ﬁ(a))+fﬁ(tt)dt+ll—f(t) dt for (1),
and ° ’

3.9) D()=D(1).

For the proof of Theorem 3.1, we require the following lemmas:

Lemma 3.1. For any regular Hausdorff method given by (3.1)—(3.5), if
(2.14) holds, then B(t)[t is integrable in (0, 1).
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Proof. 1t is clear that (2.14) includes the assumption that Ca,y=0 for all v.
Hence, by HArDY ([7], Theorem 207), B(¢) is non decreasing. JAKIMOVSKI [8]
has shown that

(340) 0y w-ws ¥ (") wa-urr=t,
v=1 v=ZO v

v .—v_ )0 for 0=<u<ua
(3.11) nlfg " §+1( )u (1-u) _{1 for a<ugl.
p/n—a

Let 6 be any number with 0<d< 1 at which () has not got a discontinuity.
Let p be a function of # with p/n— 5. Then

Senmi= % ani-f{ 3 (3)wa-wrtaser-
»=0 v

v=p+1 0 (v=p+1
1
~1- [dBw)=1-[B)~4(®)]

as n—oo by dominated convergence (using (3.10) and (3.11)). Since f(1)=1,
this gives

p
3.12) Z Cy, v PB(5).
v=0
But, by (2.14)
P n
Y S+ De,, <f’+ T e,
v=0 p+1

V=

ie.
14 n P
-0 oSG+ 3 c,,v=<p+1>(1—zc,.v)
v=0 v=p+1 v=0
so that
P
m+1)) ¢, ,Sp+1.
v=0
Thus
(.13) Yo 2Pt s 0 o
’ v=0 ""=n+1 :

Comparing (3.12) and (3.13) we have
(3.14) B =6.

This has been proved for all § at which B(x) has a discontinuity; but; since
B(u) has at most an enumerable set of discontinuities, and since f8 (9) is non-
decreasing we see that (3.14) holds for all §. This clearly implies the inte-
grability of S (u)/u.

Lemma 3.2. For any regular Hausdorff method given by (3.1)—(3.5), if
(2.17) holds then B(t) is continuous in (0, 1).

Proof. We note that (2.17) includes the assertion that ¢, ,20 for all v.
Hence, by HARDY ([7], Theorem 207), B(¢) is non decreasing.
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It is easy to see that (2.17) implies that f(x) is continuous at 1; and for
any regular Hausdorff method it is continuous at 0 (cf. (2.14)). So we need
consider only O<u<1. If the result is false, then there is some u, (0<u,<1)
at which B(u) is continuous; suppose that the jump of f(w) atu, is 4. (Thus
A>0). Choose a, 4 with

(3.15) O<a<uy<y<l1

such that B(u) is continuous at the points «, y and such that
ol
y—o

This is possible, since (3.16) is satisfied whenever «, A satisfy (3.15) and are

sufficiently near to uy; and since f(u) has only an enumerable set of discon-

tinuities, and hence has some points of continuity in any assigned interval.
Let p, q be functions of n with p/n —>a, g/n—y. Consider

q 1 n n
22 Cn,v=j{ ( )u“(l—u)"‘“} dpu)—
v=p+1 0 Lv=p+1\V
n 1 1
=E+1 (:) u(1 _u)n—v} dﬁ(u)—*jdﬂ(u)—jdﬂ(u) .

>1.

(3.16)

But the expression on the right
b4
=Jdp(u)

A,

1\%

(since B(u) is non-decreasing). So

q
Y cp,=A+o(l), (as n—0).
v=p+1
But

éoc""’g(P-H)c"'F— 8"‘3 B %‘Iﬂc" pletl) (P+1) (A+o(1)~ —a as n—o.

But
i §2

Thus in view of (3.16) we have a contradiction. This gives the result.
We are now in position to prove Theorem 3.1. If (2.14) holds, it follows that

M'u

v=0

max Icn.kl =Cpn—-1-
0<ksn—1

Similarly, if (2.17) holds, we have

max |c,xl=¢0
0gksn—1
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Now ¢, o —0 by the conditions for regularity. Also it follows from the argu-
ment given in HARDY [7] that, for a regular Hausdorff method, ¢, ,—;—0.
Thus (2.4) follows. Using (3.5) we have

n n—vy
c’l,U=(v)A #v
=(:>jt"(1—t)"'"dﬂ(t).
V]

We suppose first that (2.14) holds. Hence, it follows from (3.17) that B,
defined by (2.16) is

(3.17)

(3.18) L goeat
=2-[3y — ( )t (1=0""*dB(t)+0(1)
0v=1"Yk=0
Now
d ("Stn -
E{ﬁ)(,( *(1—1) "}
(3.19) vt L
= k k) k 1(1 )n k Z(n—k)< )t(l )n 1-k
k=1 0
Since

o) (,1):

we see on replacing k by £+ 1 in the first sum that the expression (3.19) reduces

to
_ n\ y-1 _ArY
v (v)t a-n".

Also, for v=<n the expression inside the curly brackets on the left of (3.19)
vanishes when ¢=1. Hence

L o 11 n
S5 (o ef2 (o
Thus, it follows from (3.18) that
1 1 n
Z Z ( )(A"_kuk)=j'dﬂ(t)j% Z (:)u\'(l_u)n—vdu
0 t v=1
=('f ﬁiu) vél (:)uv(l_")""'du.

We have

Xn:l(n) wW(l—u)y""= i(v) A=u)"" =1 -u)'=1-(1—u)".

v= v=1
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Thus the expression (3.20) equals

(3.21) }E-(u—)du—](l—u)"Mdu.
i u 3 u

For any fixed n with O<u<1, (1—#)"—0 hence the second term in (3.21)
tends to 0 by dominated convergence and by using Lemma 3.1.

Combining this with (2.19) and (3.18), we have

n—+ao0

1
(3.22) lim sup A,,p=2—f@dt+log<%).
0

Thus (3.6) follows from (2.5) and (3.22).

‘We now consider that (2.17) holds with the further assumption that §(z)/¢
is integrable in (0, 1). It follows from (3.17) that the first term of the R.H.S.
of (2.20) is equal to

(3.23) 2j1 5 (:) FL— " dB().

0 v=p+1
We have
0 ¥ (") A0S Y (”) -8,
v=p+1\Y v=o0\Y
thus it follows from (3.11) and Lemma 3.2, that the expression (3.23) tends to

1
2[{dp(t) as n—oo (by dominated convergence),
=2(B()—-p(@)-
Using (3.4), the expression (3.24) is equal to
(3.25) 2(1—-B(@).
It follows from (3.17) that the third term of (2.20) is equal to

3.29) {

n lv—-l e
(3.26) -2 ¥ — (Z)A ks

But
v—1 n . n n -
Z (k)A k”k=1— Z (k)A * -
k=0 k=v

Thus, by a similar argument of obtaining (3.20), (3.26) is equal to

=—2log (i)+2fiﬂ 5 (Z)u”(l—u)"‘”du+o(1).
[}

Math. Z., Bd. 89 22
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Since

0< Z (:)u‘(l—u)"‘"gfj(:')uvu—u)"-"—_-l,
v=0

v=p+1

it follows from (3.11) and Lemma 3.2 that (3.27) tends to
1
(3.28) -2 log( ) 1~ 'B(t) ————dt as n—oo (by dominated convergence).

Using the previous argument of obtaining (3.21), we find that as n—>oo,
p/n—o the second term of the R.H.S. of (2.20) in view of (3.17) tends to

(3.29) fﬁ—g’)- dt.

Collecting (3.25), (3.28) and (3.29), it follows from (2.20) and (2.5) that,
as n—o0, p/n—>a,

(3300  D@=2(1-B()— log( ) jﬁ(f)d,Jrzjl ﬁ(t)dt

But
Gan  2fi= ﬁ(t)dt jll ﬂ(‘)dt+j1d’ gl

Using (3.31) in (3.30), we find that (3.6) holds.
We now prove (3.7) and (3.9). For any regular Hausdorff method,

=p,—~p1)—p(1-)=p (say),

as n—oo. Thus, under the conditions of either part of Theorem 3.1

(3.32) D(D)=D(1)+|1—p|—|ul—
But since

2:‘% k=

k=0

and since, under either of the assumptions (2.14), (2.17),

€20 (for all n, k),

we must have

0=c, ;=1 (for all n);
and hence

O=us=1.
Thus (3.32) gives
{5(1)=D(l)—2u,
=D(D)-2B(1)+24(1-);

and since f(1)=1, (3.6) and (3.33) give (3.7). However (2.4) and (2.17) show
that ¢, ,—0, thus under the hypothesis (2.17) we must have u=0 which
gives (3.9).

(3.33)
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