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On self-reciprocal functions involving infinite series

By
V. K. VARMA

1. Introduction. The discussion of self-reciprocity of infinite series of
the type

(1.1) Fx) —f3%) +15%) —f(7%) + -

was introduced by Watson [10a]. Here f(x) is any function integrable in (0, o).

BHATNAGAR [/a] has defined the kernel o, , .. ,,(¥) as

oo o)
Aty ... dby—
(1.2) Wy n, ..., am (%) :V;f”'f];s,(tl) ];s,,,_, (tm—1) ]n,,.(x/t'l"'tm—l) —;—t_—l
0 0 ' alt
where the #’s can be permuted amongst themselves and #,- 3 >0, for
k=1, 2,...,m. The kernel in (1.2) is a generalisation of the kernel of the
Hankel transform and also of w, ,(x) defined by WaTsox [10a], in the form

(13) Vf T () T, (x[t) dt]t.

The kernels of (1.2) and (1.3) play the role of transforms under suitable
conditions. Let f(x) and g(x) satisfy

(1.4) fw (XY (D) Y

then the equation (1.4) also holds good when /(x) and g(x) are interchanged.
If g(x)=f(x), then f(x) is said to be self-reciprocal in w,, ..., transform
and is denoted by R, ,, Functions satisfying the integral equation

(1.5) ¢(x) =j°vm,(xy>f<y>dy

are said to be reciprocal in the Hankel transform of order ». If g(x)=/(x)
then /() is said to be self-reciprocal in the Hankel transform of order » and
is denoted by R,. For »=4-1/2, (1.5) reduces to sine or cosine transform
according as the sign is pos1t1ve or negative. A function self-reciprocal in
the sine or cosine transform is denoted by R, or R, respectively. Also we
know that ([1], (a))

(16) vv 1( ]2v 1 ZV—

Mathematische Zeitschrift. Bd. 81 8



100 V. K. VARMA:

The object of this paper is to establish a result (theorem 1) on self-reci-
procity of functions, involving the series (1.1), in the generalised transform
(1.2). Some particular cases of this arise with the transforms in (1.3) and
(1.5). The following results believed to be new are obtained by the appli-
cation of theorem 1.

(— 1) 227 —1xVa)2) " [I,27 — 1 2 Vaj2) — L, 27 — 1 x V=/2)]

M8

(i)

r

Il
-

is Ry, 1/2°

(i1) Z —1)" " 2r—1xVal2) )" [H_ ,2r—1xYn2) — (21'—1an/2]

is Ry, _yp (0=v<1/2).
o0
(i) X (—1)" 2r —1xVrf2)¥*#x
r=1
XE[p+1,u+v+1,u245/4::(r— 112 % Vn/2)2)
18 Ryorn
Theorem 1 can be used for establishing the self-reciprocal property of

the series (1.1) involving well known functions of Mathematical Physics.
Some known results [6] can also be obtained by the application of this theorem.

2. Harpy and TiTcHMARSH [4] have defined a class 4(w, @) of functions
where 0<w=w, a<1/2. They are (i) analytic functions of x=re'® regular
in the angle 4 defined by » >0, |¥| <o,

(i) O(|%|=*7% for small x
(i) O(|x|*~**9) for large x

for every positive 4 and uniformly in any angle || <w—n<w, where g
is a small positive quantity.
3. Let M(s) be the Mellin transform of f(x), and let

o]

(3.1) F(x)=2(— )" f2n—12),
then

}OF(x) #*~1dx=L(s) }of(x) 2" tdx=L(s)M(s),
where ’ ’

L) = B (11" en— 1)

Hence the Mellin transform of F(x) is M(s)L(s). Let f(x) belong to 4A(w, a)
and be R uns then [Ta] M(s) is of the form

By Bogy o

(3.2) M(s) =2"R I (s/2+ /2 +1/4) ... T'(s/2 + paf2 + 1/4) p(s)
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where y (s) is regular in a<o<1—a, (s=0+11); ie.

(33) p(s) is O (exp (nmf4—w +n)|t]),
and satisfies

(3-4) p(s)=yp(1—s).
Consider

#(8) = [ Flaly - Va2 (1 + yp=4dy.

Substituting Mellin’s inversion formula for F(x), we have

(3.5) @(%) =(1/2”i)fdﬁ'/(1 + yz)""’““"c?mM(S)L(S) (#/y - Vrj2) ~*ds.

c—100
On inverting the order of integrations, we get the right hand side

¢+100

— (jami) [ M(s)L(s) (xVl2)~ds [ y](1 + y2)+Shay.

c—100

On evaluating the y-integral with the help of ([2], p. 349) and substituting
for M(s) from (3.2), we get

(3.6) @(x) = (1/271) 7 2(”‘1)‘/211(S +”12+ 1/2)... I’(S'H‘”—zl * 1/3)){(8) x75ds
where e

1‘(3‘; 1)F(""+52+ 1/2)1‘("‘"—52+ 3/2)L(5)W(5) (V7/2)—
(3.7) X(S)= 2T (un/2 + 5/4) =X(1_S)

by the functional equation for L(s), viz. ([8], p- 66)

(@Y I (34 L(s) = @[V~ T (4 — sJ2) L{1 —).

2

Also as |¢| —o0, we have

(3-8) T'(A +it[2) ~ ke~ M | 2| 4-12

where % is some constant factor. On using (3.8) and (3.3) we have
(3.9) %(s) is O(exp(n —3n/4 —w +7n)|t]) as [¢t]—>oo.

Further putting x=7¢'?, where |#| < and 7 >0, we see that the modulus
of the integrand on the right of (3.6) does not exceed a constant multiple of

(3.10) r~* r(f+"++’/% +i t/2)} . ‘ r(i&:zﬁ_‘/i 4 t/z)} |z (c + it)| e,

It follows from the application of (3.8) and (3.9) that the expression in (3.10)
is O(exp — (/2 +w —|¥| —n) |¢]) as |¢| >oco. Hence the integral on the right
of (3.6) is uniformly and absolutely convergent, in any domain of x for which
|#| < and in particular for #=0. Consequently @(x) belongs to the class
A(w, a) ([8], Theorem 31, p. 47).

8*
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Now the necessary and sufficient condition that a function of A(w, a)
be R, ,. ... is that its Mellin transform should be of the form given in (3.2)
and both the conditions (3.3) and (3.4) should be satisfied ([1], ()). From (3.6)
it is seen that the Mellin transform of ¢(x) is of the same form, as (3.2) with
(w—1) in place of #n. Also the other conditions are satisfied, vide (3.7) and
(3.9). Hence ¢(x) is R, , . ... We now proceed to examine the permis-
sibility of changing the order of integrations in (3.5). We see that the right
hand side of (3.5) is not greater than a constant multiple of

(BA1)  T=a" J [1](1 4 y2)mno) yedy FIM(e +i)||L(e +i1) at.
0 —00

Hence the inversion in the order of integrations in (3.5) is justifiable by
De la Vallée Poussin’s conditions ([3], p. 456), if the two integrals in (3.11)
exist.

Now the y-integral exists if —1<<c<u,+3/2. Also by hypothesis /(x)
belongs to A (w, a), therefore its Mellin transform M(s) is O (exp — (w —7) |¢)
as |¢| —>oco. Hence the f-integral also converges. Hence

Theorem 1. Let

(1) f(x) be continuous in x=0,
oo
@ii) X (—1)""tf(27r—1%) converge uniformly in (0, o) to F(x),

r=1

(iii) f(x) belong to A(w, a) and be R, , . .. then

fF x/y |/ 2 +y I‘n/2+5/4dy
is Rl‘u Has vons in—1 * °
Example 1. f(x)=x7" ], (%) is Ry, 12, —1j2 [{4]. In the theorem, let n=2,
m=2v+1[2, uy=—1/2; then we get

o Z —1) 27—1x/y V‘Z) T 2r—1x/y-Vnf2) ]
f L= dy is Ry, 12
0

(1+ 9%

Writing 1/y for y and inverting the order of integration and summation,
which can be justified on the lines of ([3], Art. 176C, p. 455), we get

p(®) =2 (—1)t @ —1xVa2)" fy‘"Lzr—MyV—

r=1

Evaluating the integral with the help of ([100] p. 425), we get

@ (%) = (7/2) ( 1) 2r—1x\=[2)"
x [, 2r-—1xl/v 27—1xl/n/2

FMS

is Ryyi4)z-
If we put =0, we fall back upon a known result, [7].
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Example 2. f(x)=x"K,(x) is Ry, 13, _12 [10]. Let n=2 and p, of the
theorem = —1/2, then we have

Tie

is Ry, _yj2-

S Ay @r =1 aly - Val2) K, (27 — 1 2]y - Va2 (1 + y?) dy

r=1

On inverting the order of integration and summation and integrating
term-by-term, which is permissible, we get

@ (x) = (722 cos v 7) § (— 1) 27 —1xVm2) x

r=1
x [H_, 2r —1 x|n=j2) — 2r—1x2Va/ /2)]
is Ry, 12 (0=v<1/2).
Example 3. Let f(x)=2¢% n=2 and u,=—1/2, then we have

(a) px)=2] |
0
is R;.
On summing up the series, we get, after a slight change in variables

S (— Ay eI (1 4 y3)] dy

r=1

Z.f [x sech (y Vaf2)/(2* + y3)] dy

as a function of R, ([8], p. 268).
(b) Let uy=1/2, we get, after a slight change in variables,

¢(x) = f’ lsech (xyVaf2) - y/(1 + y32] dy

as a function of R,.

Since sech(yVm/2) is R, and y/(1+92)*2=K(y)=K(1/y)]y, the above
follows at once ([8], Rule 3, p. 270).

Example 4. f(x)=x+t"+U2K (x) is R, ,12,,7=0, u=—1/2 ([Ib], p. 180).
Let n=2, uy=2v+u, uy,=u; then we get
f — 1) 2r — 1 xfy - V(m[2)) 2 x
1)

x K, (27 “ 1)y Vaf2)[(1 + y2Hr+oidy

Mz

I
il

r

is Ry,
Integrating term-by-term with the help of the result [9], viz.

fxwﬂ-ﬂ)/*z{,,_a(z V0)/(p + 0" *ttdx = E(e, B, m +1::)[2lm p™+
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(x=p >m —1, m should be a positive integer), we get

@ (1) = 24T (2 + 5/4) - 3. (— 1) (27 — 1 x Vaf2) P+ x

XE[p+1,0+v+1,u/2+5/4:: (r —1]2 2 Vn[2)?]

is Ry, , (u/2+1/4 should be a positive integer, »=0, u >5/2). To justify
the inversion in the order of integration and summation, I divide the range
of integration into two parts from 0 to 1 and 1 to oo and use ([3], art. 176 B,
p- 453).

(A) Let 0=y=1, then we have:

(i) Since K, (x) ~O{(w/2x)"*e~*} for large x [10],

(3} +++32 K, (1]y) ~O (=% (r2)o+++2)

whenever either 7 or z or both become large, where z=1/y. Hence

v, (y)={(27 — 1) x/y} R K (27 — 1 ]y)
is uniformly bounded for 0<y<1 and 7 arbitrary. It is a positive monotonic
decreasing function of 7, and v,—0 uniformly as r—oco for all values of y
in 0=<y=<1; and

e o]

Sa, =3 (y/x)Y(2r — 1)< X 4jx2 (27 — 1)2

r=1 r=1

(for fixed x) is uniformly convergent in (0, 1) by Weierstrass's M-test [3].
Hence the uniform convergence of the series

oo}

G(x,y) =2 (2r — 1 x/y)*H 12K (27 — 1 x]y)
r=1
follows by Dirichlet’s test ([3], Art. 44, (3), p. 114).
(ii) Also convergence of Y |(27 —1x/y)*t*+¥’ K, (2r —1 x/y)| follows by
the ratio test. r=1

1
(iil) [|1/(1+ y?)#2+54| dy is convergent.
0
ntp 1

(iv) 2 [l@2r—1x/y)t* 2K, (27 — 1 x/y)[(2 + 72 y2)HB+5H| dy
n+10

ntp —_— 1
SA2|@2r —1xfy)stHRE, 2r — 1 5]y)| [|1/(2 + 2 y2)eR+54 dy
n4+1 0

1
<elA"- [|1]@2+ n2y2)Hr+oh dy < g,
0

where 4 and A’ are constants.

Hence the order of integration and summation for the range of integration
0 to 1 may be interchanged.
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(B) Let 1<y=<a, where a may be arbitrary, u >5/2 and »=0, then we

have:
)u+3/2

(1)

for all values of ¥ in the interval.
Hence by Weierstrass’s M-test [3] the series H(y) is uniformly convergent

:§|21—1/{1 27_1y2}u/2+5/4l<z1/

n1=sy=a.
(if) |(x/y)" 4120y — 1) K, (%]y 92+ (2 7_1yV z}u/2+5/4|

= l(x/y)"““’zK, xly)|[(2r — 1)+

y — 1 yV” 2}u12+5/4| dy

<5 Flogyprran@r —0 K vz + @
< S 1jier — 1y f [(aly)+H2 K, (3]3)] d.
Since both
Sj@r— 1) and (xR K, (x)y)] dy

are convergent; the series on the left of the above inequality also converges
Hence for the range of integration (1, oo), the order of integration and

summation may be interchanged.
Combining the two results term-by-term integration is justifiable

It now remains to be seen whether
o0
1=0fl/x'y]zu+y(xy) p(y)dy

exists.
I divide the range of integration into two parts from 0 to 1 and 1 to oo
Let »=0, u >5/2, then for the range 0 to 1 we note that

(i) Jopsu(x) ~O(227+#) for small x [105].
i) | Jaysn(xy/27 —1 | £B, a constant for all values of » and —0 as

r—>oo if 29 4pu >0.
(iti) E(x, B, y:: %) ~O (x*+ ##+ #?) for small x [5].

Hence
1
Xy (xy) @(y) dyl

=4 Z Ve Jays w2 927 = 1)](27 — 1)%] X

% [|y*HE(@u+1,p+r+ 1,024 5493 dy

e
"'n-
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where A is some constant,
oo 1

SA' T @r— 12 [|y¥*#E(u41,p+v+ 1,424 5/4::y%)| dy.
r=1 0

Since the integral on the right of the inequality converges if x5 >0,
4 —+2v+5 >0, the integral I’ converges. For the range 1 to oo, we note that:

(i) V(%) Jay+u(xy) is bounded for all values of x, y.
(i) E(e, B,y :: ¥)—a constant as x—>oco [§]. Hence E(x,f,y::#x) is
uniformly bounded for all values of » and # in (1, o).

(iii) Let
1"=1fo_y]zv+u(x3’) p(y)ay.
We have

iIE[u v+, 024504 (r— 12y Vn[2)2] |27 — 1y Vmj2)—%2] x
X ”/W ]2v+,u(xy)|

< k,i 27— AV V(2 3) Joyi (x9)] 42

where % is some finite constant. Hence

oo

| < [loO)| V(2 ) Jovr (2 )| dy

1

P8

IA

kY @r— 1)3/2—“fy3’2““ V(%) Joviu(xy)| dy

Il
-

14

where k' is another constant.
Since

00 (o <]
21(27— 1)32—#  and lfyslz-"WjTy Joviu(29)| 4y
r=

both converge if u >5/2, the integral I’ converges. Combining the above
two results we see that the integral I exists and ¢(%) is Ry, ,.

In conclusion I express my thanks to Dr. S.C. MiTrA for his helpful suggestions.
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