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Introduction.

One of the non-linear partial differential equations of greatest interest
in the recent development of theoretical physics is the non-linear wave equation

(1) %2;: —Au+kut=0

of importance in quantum field theory. In a recent paper [2], K. JORGENS
has given a proof of the solvability of the Cauchy initial value problem for
this equation in three space variables, as well as for a more general class of
equations of the form

2) O — AutF(jul)u=0

where F’ is the derivative of a function F satisfying certain growth and
definiteness conditions. The techniques used by JORGENS in [2] are concrete-
analytical and fitted to the particular equation on hand, and they give rise
to the natural question of finding a more general framework within which
existence theorems for non-linear equations of a “wave equation type” can
be established.

It is our purpose in the present paper to establish an abstract existence
theorem from which the results of JorGENs will follow as a special case. Our
discussion is therefore completely operator-theoretical in character, but we
should point out that the significance of the results obtained is rooted in the
possibility of verifying the abstract hypotheses in particular concrete cases.
Section 1 is devoted to the general discussion for operator equations. Section 2
specializes the general results to obtain Jérgens’ theorem, as well as theorems
for non-linear wave equations of the form (2) in R* as well as R®.

Let us note that in a footnote to [2], it is remarked that J.L.LIoNs
(unpublished) has obtained weak solutions for non-linear wave equations
generalizing Jérgens’ results. Our results establish the existence and uniqueness
of strong solutions or more precisely, of strict solutions of second-order operator
differential equations in the time variable ¢. Non-linear wave equations have
been studied for a slightly different purpose by W. STRAUSS in his M.I.T.
Doctoral Dissertation [4].



250 FEL1ix E. BROWDER:

Section 1. Let H be a Hilbert space with inner product denoted by
(-, .) and norm by |-|. Suppose that A4 is a positive densely defined selfadjoint
linear operator in H, 4% its positive square root. If R*— {¢:t>0}, we consider
the operator differential equation

(1.1) 4+ Au+Mu)=0, tCR*;

with the Cauchy initial conditions
d
(1.2) u(0+) =, 2 (04) =y.

Here M(u) is a (possibly) non-linear function from D (A% to H, concerning
which we shall make some assumptions below. We shall consider stzict solutions
of our initial value problem, i.e. the function u: R*—H will be said to be
a solution provided that u(f) € D (4) for all £>0, Au and d?u|dt* are uni-
formly continuous functions into H on every interval of the form [0, T]
with T>0, A%« (¢) and A4¢ %1;- are uniformly continuous on [0, 7] and the
equations (1.1) and (1.2) are satisfied. (All derivatives throughout this paper
are strong derivatives.)

We impose upon the linear subset D (4%) a Hilbert space structure which
turns it into a Hilbert space W by identifying D (4%) with the graph of A%.
Thus

luliv=N4bult =clue.
Assumptions upon M:
(I) Given any C>0, there exists k>0 such that

”M(“) || =ke,
1M (4y) — M ()| < g e — by

provided that |uly, + |u, |y <C.

(IX) There exists a real number ky such that for every strongly differentiable
function w from R* to H with dujdt uniformly continwous from [0, T] to W,
we have

0

Re{f e (“‘s”’ft—?‘s))“}g—ko {1+ [lwts)fe ds}
for all t>0. o

(III) If C is any positive constant, there exists k>0 such that for every
continuously differentiable function v from R* to W,

| 5 01w @3} e %

oy <<
dt 0=i=T

w
provided that
[bOlwsC, osi=T.
(IV) For any positive constant C, there exists ky>0 such that for any pair
of continuously differentiable functions v and v, from R* into W with
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d d
[o©ly -+ s O+ | 57|+ | Gl =€, 0st=T.

w

ot

we have

|2 (M o) — M ()}
+|

.gké{]lv(i) — o (t)|w+

g'(t)'%(t)l‘w}’ for 0<t<T.

Theorem 1. If A and M satisfy the conditions (I) through (IV) above and
if €D (A), w=D (AY), then there exists a solution u of the equation

(1.1) P pAutM@) =0

satisfying the inittal conditions
d
(1-2) u()=¢, 0=y

Theorem 2. (a) Under the hypotheses of Theorem 1, for each T and C>0
and for each pair of iwitial data [@, ] and @y, y,] with

lely +lpl=C.  leulw+lwl=C,

we have for corresponding solution w and w, of equation (1.1) on the interval
[0, T],

" du,

Js® = O+ | S0 — G5 O SET.O flo = albw+
+ly—wl}, ost=T.

(b) Similarly if

' el +lelw+lvlv=C. 4@+ ledw+lvilw=C,
then
|Gy — 0], + M) — 4w SET.O (49— Aql+

+H‘P_‘P1"w+u’/’_‘l’1nw}' 0=¢=T.

Corollary to Theorem 2. The solution of the initial value problem for
the equation (1.1) is uniquely determined by the initial data (@, y].

We shall obtain the proofs of Theorems 1 and 2 from a series of Lemmas
which hold under the hypotheses of Theorem 1.

Lemma 1. Let u be a solution of equation (1.1) on [0, T] with initial data
given by (1.2). Then for all t>0, we have

L)

|4

Proof of Lemma 1. Taking the inner product of both sides of equation
(1.1) with du/dt, we obtain

4 {2 o) e, )0

b @) < (Il + i} .
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Integrating from 0 to # and applying assumption (II) on M, we see that

Since |4} g@[?=|¢|},, the inequality of the Lemma is obtained by applying
the following lemma.

Lemma 2. Let h(t) be a continuous realvalued function for t=0 such that

2

Ok ok~ Mbgps2m 1 [ ).

)<k +k1fth(s)ds.
0

Then:
ht) <ken.

t
Proof of Lemma 2. Let g (t)= [ 4(s) ds. Then g (¢) is absolutely continuous,
g(0)=0, and for >0, 0

Ee)=k+hel).

Multiplying by e~** we have

da —hty < J o=yt

=1 {gt)e Mt} ke k.
Integrating, we obtain

g(t) S k() H{eht —1).
If we substitute in the inequality for g’(f) and note that g'=%, we obtain
the desired conclusion.

Lemma 3. Let u be a solution of equation (1.1) on [0, T] with initial
conditions (1.2). Given C>0, T>0 there exists a constant k(T, C) such that
d’u

o Lu
at ar

if loly+ 4o+ pli=C, 0<t<T.
Proof of Lemma 3. It follows from Lemmas 1 and 2 that

"< k(T C)

ot

2
lu @+ |5 @ s kee™, k>0,

Let 6, (u) ({)=h{u(t+ k) —u(t)}. We propose to estimate various norms of
0y (u) for A small. Since  satisfies equation (1.1), it follows that for fixed
h>0,

M(u(t+ k) — M(u()

h =il

L1001 0) + A8, () +

By Assumption (III) about M, we may estimate the last term by

| PR = MO | < e r04w) Oy + 2B, T

where ¢(h) -0 as A—0.
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Set v=4,(#). Then v is a solution of the equation

2 ;
L) +400)=i0)
where ||j (¢)| < k|v (#)|w+&(h) for 0=¢<T. Taking the inner product of the
last equality with dv/d¢, we obtain

a dv ||2 P e
LA opp) kOl S +em| 5] ost=T
Hence
14 dv |2 2 k||l dv |2
?E{‘ | +||”(t)llw}§7\}7 ' telh).

Hence g (¢) =||v (¢)|fw + ‘l

%':- (® Uz satisfies the inequality

gO=kel)+a(), 0<t<T.
Therefore, g(t) satisfies the inequality
¢(t) < {2 (0) + e} SE(T, O (0) + oM}, OSI=T

with k(T, C) independent of 4. Translating this latter inequality in terms
of our solution # of equation (1.1), it becomes

G e — G O+ e+ ) — w3

<k(T,C) g+ M@P+Ipl+ e}, O0St=T

where & (k) =0 as #—0. The terms in each of the norms at the left of the
last inequality approach d?u/d¢* in H and d u/dt in W, respectively, as ~—0.
Hence we have the inequality

du

ag?

I\

T?

N

%’tﬁ(t)“tvgk(T,C), 0=t

and the proof of Lemma 3 is complete.

Proof of Theorem 2(a). Let # and %, be solutions of equation (1.1)
corresponding to the sets of initial data [g, y] and [¢1, v1]- Then w=u—u,
is a solution of the equation

Lwl)+Aw() + M (u(@) — M (m®) =0

with initial conditions

d
w (0) =‘P—‘P1x—(;%(0) =%~
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Taking the inner product of the equation for w with dw/dt, we obtain

3 ar ([ O + lvw o)< | 52w w o) - 1 o)l

The last factor on the right can be estimated using assumption (I) on M
to obtain

1M (w(8) — M (s (0)) | < ke, 0 ()]

an estimation which is possible because of the apriori estimate on |u (t)[,

and |u, (¢)y for 0OS/<T in terms of 7 and C given by Lemmas1 and 2.
Thus we have

Ll ol oby s

W 0=¢=T,

G0l @l

dt

Setting g (¢) = H'Z—Zy (t)’i2+]|w(t)]|§y, we obtain

gOSKg(), O0st<T.
Hence
g)=g(0)e"'<k(T,C)g(0), 0=<t<T.
Evaluating g in terms of « and %, we obtain the conclusion of Theorem 2 (a).

Proof of Theorem 2(b). We again set w (f)=u(f) — u, (f) and by analogy
with the proof of Lemma 3, consider

O (w) () =A{w (t+h) —w ()}
The function §, (w) satisfies the equation

@ M+ ) — M
o (84@)) (&) + 48, () () + MLeET )~ M)
_ M(uy (2 + ) — M(uy (2)

h
Since # and %, are by assumption continuously differentiable maps of R*

into W with uniformly continuous derivatives on [0, 77, it follows that

=0.

M e+ ) — M @)} — & (M @) | =2,

(M 4 ) — My @)} — -2 (0, 0) | = 22 (),

|4 — by ) 0] = a0,

O — 00 ()| =ea®),

where all the ¢;(k) -0 as #—0. It follows then from Assumption (IV) about
the operation M as well as these last inequalities that

177 {M (w (¢ + ) — M (0 (8))} — BH{M (wy (¢ + &) — M (uy )}
=< k7, c {64 (@) O)w +lre &) |w}
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where the possibility of the estimation depends upon the a priori bound for
|du/dt|y, and |du,|/d¢ derived in Lemma 3, as well as the bound for |uly
and || derived in Lemmas{ and 2.

Taking the inner product of both sides of the differential equation for

v=20,(w) with dv/dt and applying the inequality for the last term in that
equation derived above, we find

4
Al

Setting ¢ () =[v (A + |

L O +lvok}=r{| 5 O @} oo+ 0.

‘Z 2—|—[|w(t)||2 , we obtain

gO=kg(t)+e), 0t T,
and therefore

g <[g0) +eM]<k(T,C)[g(0)+&(h)], 0=t=<T.

Replacing ¢ by its value in terms of » and #, and letting #—0, we obtain
the inequality of Theorem 2(b). Q.E.D.

Thereby the proof of Theorem 2 is complete, and thereby the Corollary
to Theorem 2 is valid, namely, the solution %(f) of equation (1.1) on [0, T']
is uniquely determined by its initial data [, y]. As a consequence of this
last fact, we have the following:

Lemma 4. In order to prove Theorem 1, it suffices to show that for each
C>0, there exists an interval Tc>0 such that equation (1.1) has a solution
u (t) on the interval [0, T¢] for every set of initial data [, ] with

lAel+Ielw+lylw=C.

Proof of Lemma 4. It follows by the Corollary to Theorem 2 which has
already been established that if a solution  existed on every interval [0, T']
for every given set of data [g, y], then these various solutions would coincide
on the overlap of their domains of definition and could be assembled together
to give a solution of the initial value problem defined over all of R*. If
Theorem 1 were false, it would have to be true that for some ¢ €D (A4) and
wEW and for some 7>0, no solution # would exist on the interval [0, T]
with the given initial data.

By the assumptions of the Lemma, however, a solution # would exist over
some interval (0, 73] and hence by the uniqueness theorem over a largest
such interval. By Lemmas 1, 2, and 3, which do not depend for their validity
upon # being a solution outside of the interval (0, 7;), we know that

|

where k. ; depends only upon the initial data [¢, y] and upon Tj,.

d?u

w0+ &

w‘l‘"“(t)"wékc,n, 0=t=T,,
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Furthermore, since # is a solution of equation (1.1) for which 4% may
be expressed in terms of d%u/d#® and M(u), it follows from Assumption I
on M that 4 u(t) is uniformly bounded in H for 0<¢< T .

Let
G =0;ng{||/1 w@+ @+ | 0]}

and let T, be the interval length corresponding to C; by the assumption
of Lemma 4. The initial value problem for equation (1.1) with initial data

u (1), % (Tz)] taken at T,=1T; — % T, (rather than 0) has a solution #, (¢)

on the interval [T,, T, + 3 T,]. By the uniqueness result which is a corollary
of Theorem 2, # (f) and #, (f) which have the same initial data at 7=T, must
coincide on the interval [T, 7;]. Hence # can be extended to a solution
of equation (1.1) on the interval (0, 7 +%7,) contradicting the maximality
of the interval (0, 7;). Hence we have a contradiction from the assumption
that Theorem 1 is false, and Lemma 4 follows.

To complete the proof of Theorem 1 by establishing the hypothesis of
Lemma 4, we shall carry out the construction of a solution for equation (1.1)
on an interval [0, 7] with initial data (1.2) by successive approximations,
or more precisely by using the contraction principle of Picard in a suitable
complete metric space.

Let ¢, 9, and T be given. We consider the metric space X, depending
upon ¢, 9, and 7T, whose elements consist of all functions # from [0, T] to
H such that « is twice continuously differentiable into H from [0, T], » is
once continuously differentiable into W from [0, T'], #(¢) lies in D (4) for all
¢t in [0, T] and A is continuous into H from that interval, and finally,

u(0)=<p,%1ti(0):'#-

We impose upon X the metric o (%, #;)=|u —u, |y, where

||ullx=0;1t1§r_>r{\

d?u

5 O] @+ | 5 0, + 1O}

It follows by standard arguments that X is complete with respect to this
metric.

The elements ¢ and y which are given satisfy the conditions: ¢ €D (4),
p€D(AY). We define

Ite: vl =14 @1+l lbw+ I -

We suppose that |[g, ]| <C, and propose to choose 7>0 and a non-
empty closed set |v|y<C, in the corresponding space X, with C,; and T
depending only upon C and not otherwise on ¢ and y, such that the equation
(1.1) has a solution in that set on the interval [0, T]. To ensure the latter
fact, we construct a mapping S of X into itself whose fixed points will coincide
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with solutions of equation (1.1) and show that S has a fixed point because
on a given set {v| |v|x<C,} which is carried into itself by S,

|Sv— Su|x=c|v—u|x, c<A1.

Let v € X. Then u= Sv is given for an arbitrary choice of T" as the solution
of the equation
d*u

(1.3) W—{—Au:—M(v(t)), 0<t=T,

with initial conditions

(1.4) u(0)=¢,%(0)=w-
Remark. The linear equation

d2u

(1.5) =

+Au=f@F, O<t=T
with the initial conditions (1.4) has an unique solution if [ ||f(#)]|dt<4-oo
with the solution given by
t
(1.6) u(t) = cos(A¥t) @+ sin (A}) (A7¥y) + [sin(4E(t—s)) - (A~4f) (s)ds.
0

Lemma 5. (a) The solution u of the equation (1.5) with initial data [g, v]
will lie in X provided that 9 €D (A), y €D (AY), and f is a continuously dif-
ferentiable function from [0, T] into H.

(b) For the solution u of equation (1.5) with initial data [@, p), we have
Jolle < B{llp 9+ 1 O+ T sup |7 @) + T sup |1 @)}
0<t<T 0St=T

with the constant k independent of @, v, f, and T.
Proof of Lemma 5. We set #=u,-+ u,+ uz, with

u, (£) =cos (A%¢) p,
uy (f) =sin (42) (A~ Hy),
t
ug ()= [ sin (Ab (¢ —s)) (A~H) (s) ds.
0
If pcD(4),
uy (t) = —sin (4%¢) (A} @),
uy (t) = — cos (4¥) (A ),
and u, and ;' are both continuous into H. Furthermore
Abil (f) = —sin (431) (4 )

is also continuous into H. Hence %, € X, and

I =% {14 ¢l + I lhw}-

Mathematische Zeitschrift. Bd. 80 18
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For u,, we know that if € D (4}%),
ug (£) = cos (A}2) (),
uy (f) = —sin (4#7) (4y),
so that both #; and u, are continuous into H. So is

Abuy () =cos (4%7) (Aby).
Hence u,€ X, and
ool = K[ v -

We turn now to the component #;. We remark that
t
ug () = [cos (A4 (t —s)) f(s)ds.
0

Since u, is a solution of equation (1.5), it suffices, in order to estimate A uy(Z),
to estimate d2u,/d#2. For the latter, we have

us (f) ::-tfcos (A4 — s)) F(s) ds

=)+ [ 57 [cos (4}t — 5))] £(s) ds

=) — [ 5 [cos (4}t — )] /(5) ds

=f(t) + fCOS(A*(t—s))f'(s)ds—f(t)+COS (4%t f(0).
=cos(44¢) f(0) + fcos (At —s))f'(s)ds.
0

Therefore, |uz ()| <|/(0)]+ T sup |f'(#)], and u3 is a continuous function
0<i<T
into H. The same inequality holds for sup |/ (#)|. A similar calculation yields
0<t<T

the same result for Adug(f). Hence uz,€ X, and

g e < 2{| (0)|+ Tsup||f ()] + Tsup||f ([}

Thus u, being the sum of three elements of X, lies in X itself and satisfies
the inequality of part (b) of Lemma 5.

Lemma 6. Let C>0 be given. Suppose that |[¢, ]| <C. Then there exist
constant C,>C, T>0, and c<A, depending only upon C such that:

(@) For |v|x=C,, |Sv|x=C,.
(b) If Jolx=Cy, |ulx =Cy, then

[Sv—Su|x=<clv—uv].
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Proof of Lemma 6. If u=Swv, u is the solution of the equation

w'(t)+Aut)=— M(v(@), O0<t=T,

with initial data [@,]. By Lemma 5 with f(t)=— M(v(f)), we know that

d
lule<EC + M@+ AT sup M (v0)] +2T sup |5 (v16)].

0<t=T 0<i<T

Since |v|x<C,, it follows from Assumption (III) on the operator M that

sup
0<t<T

LM )|k,

and similarly it follows from Assumption (I) that
sup |M (v (0)] <ke,.
0st<T

Thus
|u|x< ke, T

We choose C, so large that C;>2%'C, and then T so small that
T<C (2ke)™
Then the inequality of Lemma 6 (a) is verified, i.e.
=G

To prove Lemma 6(b), let u=Sv, u;=Sv, w=Sv— Sv,. Then w is
the solution of the equation

W)+ Aw () =M (0,() — M (v(0)
with initial data [0, 0]. Thus if we set / ({) =M (v, (f)) — M (v (¢)), as in Lemma 5,
we have f(0)=M(p) —M(p)=0. By Assumption (IV) on M, we have
| 240 01 ) = Mo )} | ke, {1010) — 0O + ) — 0 @},
By Assumption (I) on M, we know moreover that

1M (v, (8) — M (v )| = ke, o2 (6) — v (@) -
It follows from Lemma 5 that
lwlx=tke, T o —vyx-

Choosing T — (2k¢)%, c=%, we find the proof of Lemma 6 to be complete.

Proof of Theorem 1. By Lemma 6, we can choose T so small that on
the set |[v|x=C, which is carried into itself by S, S contracts distances by
a ratio c<<1. Applying the contraction principle, we know that S has a
fixed point in this set. Obviously, however, a fixed point of S is a solution
of equation (1.1) with initial data [, y] on the interval [0, 7] with the length

18*
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of T depending only upon |[g, ]| By Lemma 4, this suffices for the proof
of Theorem 1. Q.E.D.

Section 2. To specialize the results of Section 1 to obtain solutions of
non-linear wave equations in the ordinary sense, we let H=L2(E"). (More
generally, we could consider H=L2?(G) for suitably smooth open sets G of
E™ and consider realizations of strongly elliptic operators 4 under suitable
boundary conditions.) Let 4, be a linear elliptic partial differential operator
of order 2m with real coefficients on E”. We suppose that A4, is formally
self-adjoint and uniformly elliptic on E”, all of its coefficients are uniformly
bounded, and the top-order coefficients are uniformly continuous. We know
then that

(Aop, @) = — ko (p, @)

for @ in C°(E”), the set of C* functions with compact support in E”.

Consider the unique self-adjoint realization 4, of the differential operator
A, in L2(E"). It follows from the results of [I] that A=4,+ (k,+1) is a
positive operator and that

2 [DrufP<kfAbulp.
|la|=m

If we use the W™2norm defined by
k2= 2 [1D=up,
|| =m

it follows also that the W norm corresponding to the graph norm of 4% is
equivalent to the W2 norm.

By the Sobolev Imbedding Theorem (e.g. Lemma 5 of [1]), W™2(E") C L?(E")
for any p=2 for which ; = i — —, (p<+ oo if the latter quantity equals

zero) with a continuous 1mbeddmg. We specialize the operator M to be
the non-linear multiplication operator

M(u)=F'(|u|?)u

where F'(7) is the derivative of function F(7), =0, which we normalize by
setting F(0) =0. Let us consider what assumptions we may make on F, F’, F"’
and F""" which will cause Assumptions (I) to (IV) on the operator M to hold.
Let us consider Assumption (II) first.

We have



On Non-Linear Wave Equations 261
If we assume for example that F()=0, then the function G (u, f) defined by

G (u, 1) =E{F(|u(t, x)|2)d x

will be non-negative whenever it makes sense and Assumption (II) will be
satisfied. More generally, if G (u, #)= —k,, Assumption (II) will hold.

Theorem 3. Let H=L2*(E"), A the unique self-adjoint realization of a
formally self-adjoint, linear strongly elliptic partial differential operator of order
m with the boundedness and uniformity conditions stated above. Let F(r) be
a twice-differentiable function of the real variable r, 0=r <+ oo, such that

(i) F(0)=0, F(r)=0 for r>0. (Or more generally G (u, )= —ky.)
(ii) If n>2m, let g=m(n—2m), and suppose that
|F'(r)| <k, r=1
|F"(r)| <kt r21
|F""(r)] <kr% r=1.
(iii) If n<2m, suppose that for some g+ oo,
|F'(r)| k77, 721
|F"(r)| +|F" ()| Skt r=1.

Then the equation
(2.1) w'(t)+ Au(t) +F (|u(f)]2) () =0

has an unique solution defined on R* for initial data [, y] with ¢ in Wim2(E"),
yin W™2(E"). The corresponding continuity properties follow from Theorem 2.

Proof of Theorem 3. We need only to verify Assumptions (I), (III), and
(IV) on the operator M (u)=F"'(|u|?)u.

(1) We have

]|M(u)||2:f|F’(|u|2(x))u(x)|2dx§kf|u[4q+2dx§k]|u||1%ﬁ+2z.
En® En
In case (ii) we see that

|#tlag+2= | lenin—2mr =% [ lwm.2 pm

and the same inequality obviously holds in case (iii). Thus

M) <1 (lulw)-

For the estimate of the Lipschitz constant in (I), we observe that M (u) —
M (u,) can be estimated by

1M () — M) < |F'(| %) (0 — )|+ IF"(|]?) — F'(]) 0]
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For the first of these terms, we have by Holder’s inequality,

() (e — ) P = [1F" (| w]?) (5)| - | 0 — 3 2

Skflul*u—wm]Pdx < klufilis]u —nfige.

For the second term, we have

V(1 wl?) = F* (|| s o = [ |F (8 (5) |3 () [2+ (1 — & () [ ()[2) 2

X |y (%) + w(x)[2- | o (x) —ul(x)lzdxéE{{lu(x)|2+ |02 (%) 21972 | 0y |2
|t6(%) — 0y (%) |2 % S Re{Jwfifsn + o a5 42} | — 01 [R g2
Hence
1M () — M) | < () 0 — 10

Therefore Assumption (I) on M has been verified.

(2) We wish to estimate | £ M (v (t))H. We find that

2 M (v(t) =L F(lu@Du@® =F(u@]2)w@) +2F"(|u@)]?)| « 0]’
Estimating as above, we have
[ (e @)12) ' O < & (¢ @) ) 0" @) -
For the second term, we have
HF"(IM(t)P)Iu(t)lzu’(t)llzékE[|u(t)l‘”“‘lu(t)l“lM'(t)lzdx
=Jlu@l*|w @2z <k (July) - JuTy-
A similar estimate holds for the first term, and thereby we have
|2 ()| <k (1 Ol I O
(3) To obtain the estimate for Assumption (IV), consider the function
ditM (u(t)) — %M(ul(t)) =F" (|u(®)|?) (w'(t) — us (8)) +
+F (| @)]2) —F' (|02 (6)]2) 061 (&) + 2F" (|00 (6)[2) | 20 (8)|2 (&' — 203) +
+2F" (|u(®)]2) (|0 @)[2 — | 0 (£)]2) 1 () +
+ 2| 0y (8) 201 (2) (F” (Joo (9)]®) — F"" (|, 8)]%)) -

All the terms except the last are estimated as before. For the last, we need
our assumption on d3F/d»3. We have

Coea @12 22 @)] [ (| 8)[2) — F* (Joea (5] )P
kS m @ u @ [Ju@] + | m @]+ u @) —u @)pdx
< e (ol =+ Joea ) fx (0" @) ) Nt — 223) @)
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by Holder’s inequality since

4q9 —2 2 e 2 —
4q +2 4q+2 4q+2

Hence

| &0 () — M (s )] = (I O+ O+

0]+ 0] )0 i+ i

Thus the proof of Theorem 3 is complete.

For the case where 4 is the Laplace operator on E?, g=1, and the hypo-
theses of Theorem 3 are satisfied by

F()=krt+kyr, (kb k=0).

Section 3. We finish our discussion with the following remarks. The
assumption on F”’ in Theorem 3 which was not made by JORGENS in [Z]
can be eliminated in the present discussion if one is willing to consider weak
solutions rather than strict solutions. More precisely one can prove the
existence of weak solutions with merely the Assumptions (I) and (II) on the
operator M in Theorem 1 and 2. We have avoided the detailed discussion
of this possibility in the earlier part of this paper in order to avoid the com-
plication of discussing the concept of weak solution. Let us outline this
concept briefly at this point and indicate the character of the existence proof
under the weaker hypotheses without (III) and (IV).

Let X’ be the complete metric space of functions # from [0, T] to H
which are once continuously differentiable into H and continuous into W with
u(0)=@€ED(A}Y), ycH, and with the metric defined in X’ by o(u, u)=
| — u, |, where

Fel = st {lw Ol + | 57}

We may define a mapping S of X’ into itself by analogy with the definition
given for S on X by letting u= Sv be the solution of

(3.1) w'(t)+Ault)=—M @), vEX,

with #(0)=g, #'(0)=v. In this case, the solution # of equation (3.1) is a
weak solution since #'(f) will not exist in general. We may define it without
ambiguity by setting

(3.2)  u(f) =cos (A¥t) @ +sin (A}¢) (A7} +fsin (Ab(t—s)) (A7) (s) ds.

Analogous of Lemma 1, 2, 4, 5, and 6 may be established for weak solutions
under Assumptions (I) and (II) for ¢ in D (4%), p € H. Corresponding versions
of Theorems 1 and 2 then follow.

Finally let us note that since only “‘energy’’ estimates are basic to the
argument, self-adjointness is not necessary for 4 with suitable modifications
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of the definitions (along lines described in [3]). As we have noted before,
we may also specialize to self-adjoint realizations 4 of strongly elliptic

operators under general self-adjoint boundary conditions on smooth open
subsets G of E”.
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