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Systems of ideals in partially ordered semigroups

By
D.C. J. BURGESS and R. MCFADDEN

JarFarD ([3], Chapt. 1, Sect. 3) has shown that a directed partially ordered
group may be imbedded, by means of an ideal extension, in a complete lattice
semigroup. In this paper we show how this procedure may be generalised to
a wide class of partially ordered semigroups, with, in addition, preservation
of existing least upper bounds. In particular, we give a construction which
is applicable to a class of semigroups which includes that of all residuated
semigroups. Further, we obtain necessary and sufficient conditions under
which a partially ordered semigroup may be imbedded in a conditionally
complete group.

We introduce in Section 1 the terminology used in the paper, and in the
next Section the notion of an ideal extension, in terms of which we find
necessary and sufficient conditions that a partially ordered semigroup may
be imbedded, with preservation of least upper bounds, in a (conditionally)
complete lattice semigroup. It is shown that not every partially ordered
semigroup may be so imbedded. We describe the result mentioned above
for residuated semigroups, and complete the Section by proving some general
results on ideal extensions. In Section 3 relations between different ideal
systems are considered, and in the final Section we establish necessary
and sufficient conditions under which a partially ordered semigroup may be
imbedded in a conditionally complete group.

Section 1. A partially ordered set is a set A in which is defined a reflexive,
anti-symmetric and transitive relation <. Given a €A, the set of all x in 4
such that x<a will be denoted by (a),, or simply by (a) if no confusion
can arise, and will be called the principal ideal generated by a in 4.

A partially ordered semigroup is a semigroup S (written multiplicatively)
in which is defined a partial order < such that for any a, b, x in S,

a<b implies ax<bx and xa=xb;

S need not have an identity element. The zero of S is the (unique) element z
of S such that: zx=xz=2z<x, all x in S. The semigroup S is directed 1 if
for any two elements & and b of S there exists y in S such that a<y and
b<y. A residuated semigroup is a partially ordered semigroup S in which
there exist for any couple of elements a and b of S left and right residuals
a.b and a. b, the greatest elements x and y of S such that, respectively,
xb<a and by<a; if a'.b=a. b, we write a.b=a.b=a:b.
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A (resp. conditionally) complete lattice semigroup is a (resp. conditionally)
complete lattice S in which is defined multiplication such that:

a{VX}=VaX and {VX}a=VXa

(wherever the expressions used have a meaning) using VX to denote the
least upper bound of a subset X of S. To avoid confusion, we write the
least upper bound of elements a and 4 as a v b, and the set union of sets 4
and B as AUB.

A (resp. conditionally) complete semilattice semigroup is a (resp. con-
ditionally) complete V-semilattice in which multiplication satisfies the above
distributive laws (wherever the expressions used have a meaning). A sub-
(resp. conditionally) complete lattice semigroup of a (resp. conditionally)
complete lattice semigroup S is a subset of S which is also a (resp. conditionally)
complete lattice semigroup under the same operations of V, A and multi-
plication as S; sub(resp. conditionally) complete semilattice semigroups are
defined in an obvious way.

A (V-complete) homomorphism of a partially ordered semigroup S onto
a partially ordered semigroup S’ is a mapping & of S onto S’ such that:

[xy]?=[x]9[y]¢ and [VX]d=V[X]

whenever V X exists. An isomorphism is a homomorphism ¢’ of S onto S’
such that:
x<y ifand onlyif [x]d <[y]9d"

Section 2. Let S be a (resp. directed 1) partially ordered semigroup in
which is defined a mapping X —X, of the (resp. non-null, bounded above)
subsets of S into the set {X,} of subsets of S which satisfies:

C1. XX,.

C.2. XY, implies X,CY,.

C.3. Foreachain S, {a},=(a).

C4. Foranyain S, a X, (¢ X), and X,a (X a),.

Cs5. If YCX, and VY exists, VYELX,.

By CA. and C.2., X—X, is a closure operation on the (resp. non-null,
bounded above) subsets of S, and if we call XS an 7r-closed ideal of S if
and only if X=X,, the set (resp. C;(S)) C,(S) of all r-closed ideals of S
forms a (resp. conditionally) complete (resp. V-semi-)lattice, partially ordered

by inclusion, which we shall call the complete (resp. restricted) ideal system,
with, for ¢ in any index set I:

V X! = (U X%, and in the complete case, A X} =N X?.

In the complete case, to the empty set @ corresponds (z) where z is the zero
of S, if such exists, and @ itself otherwise.
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We may define in (resp. C,(S)) C,(S) a law of composition o,, or simply o,
if no confusion can arise, by:

X,0Y,=(XY), if X404 Y, and by writing, for any subset W of S,
OW=Wg=9,

the empty set is included in this definition.

It is easily seen that if X’ and Y’ are subsets of S such that (X'),=X,
and (Y'),=Y,, then X,0Y,=(X'Y’),. This law of composition is both as-
sociative and distributive with respect to V as defined above (the verification
follows that of [3] Chapt.1, Sect.3 and is omitted), and so (resp. C,(S))
C,(S) is a (resp. conditionally) complete (resp. semi-)lattice semigroup with,
in the complete case, a zero (z) or @ according as S has or has not a zero z.
We call (resp. C,(S)) C,(S) a (resp. restricted) complete ideal extension of S.
Note that in C,(S), multiplication need not be distributive with respect to
intersection; in Example 2 below, () o {(m) A (n)}= (a) while

{@o (m}A{@om}=SNS=S.

We prove Theorems 1 to 6 for complete 7-systems; they, and their corol-
laries, hold, mutatis mutandis, for restricted systems.

THEOREM 1. A necessary and sufficient condition that a partially ordered
semigroup S may be imbedded in a complete lattice semigroup G, with preservation
of existing least upper bounds, is that there can be defined on S an r-ideal
system C,(S). Further, S may be embedded with preservation of existing least
upper bounds, greatest lower bounds, and residuals.

Proof. Let C,(S) be such a system; we have seen that it forms a complete
lattice semigroup. Define the mapping ¢#: S—C,(S) by: [x]#=(x); then ¢
is an isomorphism of S onto the set of principal ideals of S, (a subsemigroup
of C,(S)) and preserves existing least upper bounds, etc. Forifin S, a=Ax,,
icl, thena<x,;,alli€l, (a) C (x;) and (@) CN (x;); on the other hand, ¥, N (x;),
all €1, implies that every y in ¥, is in each (x;), whence y<a and Y, (a).
If b=Vzx;, (b)> (%), all 1€ implies that (b)> (U (x,)),, 1€ by C.2., while
if ¥,5(U()),, all i€, Y, contains (b) by C.5. and C.2. Finally, if c==a.'},
(b) o (¢) C (a), while (b)o X, (a) implies that for any x in X,, bx€ (a) whence
x<a.band X, (c).

Conversely, if S is imbedded as above in a complete lattice semigroup G,
define, for any subset X of S, X,=(a)sNS, where a=V X in G. Conditions
C.A., C.2., C.3. and C.5. follow immediately, C.4. on noting that in G, Ve X =
c{VX}

Note that in any ideal system, restricted or complete,

X, = (xgx(x)), =VX in (resp. C,(S)) C,(S).
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Not every partially ordered semigroup may be imbedded as in Theorem 1 ;
consider the semigroup S whose diagram and multiplication table are:

ExXAMPLE 1. a
a b ¢ z
a a 2 2 2

b z 2z z 2z b ¢

¢ 2 Z Z 2
zZ z 2z z 2

Z

Fig. 1

If there existed G as in Theorem 1, we could define the complete lattice
semigroup C,(S); however, (a)o{(b) V (c)}=(a) o (@) =(a), while

{@o®)}V{@o(e)}=(2 V()= (2).

Although any (resp. directed 1) partially ordered semigroup S may be
imbedded in a (resp. conditionally) complete (resp. semi) lattice semigroup
if it is not required that existing least upper bounds be preserved, (for (resp.
non-null, bounded above) X (S, let X,=U (%), for x in X; clearly C.1. ... C.4.
are satisfied, but not necessarily C.5.) we have the following result.

THEOREM 2. If a partially ordered semigroup S may be imbedded in a
complete lattice semigroup S’ as in Theorem 1, it is necessary that if X is a
subset of S such that VX exists, then for any element a of S, VaX and VXa
both exist, with.

VaX=a{VX} and VXa={VX}a.

Proof. Let y=V X, then, with an obvious notation, y’=VX’ in S,
and a'y'=a’{VX'}=Va'X'. Since least upper bounds are preserved, and
a’ X' is the image of a X, it follows that ay=VaX. Similarly for ya.

CoROLLARY 2.1. If S is a finite semigroup, the condition of Theorem 2 is
both necessary and sufficient that S may be imbedded as in Theorem 1 in a
complete lattice semigroup.

Proof. We need only prove sufficiency. For any subset X of S, define
X,=U(x;) where x,=VY for all subsets ¥ of X which have a least upper
bound, X,=(X,), etc. Since S is finite, there exists an integer # for which
X,=X,1; we define the closure X, of X to be X, for this value of #. Clearly
C,(S) satisfies C.1. (x=xvx) C.2,, C.3. and C.5.; C.4. follows by induction.
If ycaX,, y€a(x)(ax,) where x,=VY and Y X; thenax,=VaY € (aX),
and aX;((aX),. Let y€aX,,, where aX,((aX),; then y€(ax,,,) where
% =VY and YCX,. Since ax,=VaY€(@X,),C((@X))1=(aX)s, we
deduce that ¢ X, (4 X),and similarly that X,a C (X @),, so completing the proof.

Consider now a (resp. directed 1) residuated semigroup S; define the
ideal system (resp. C,(S)) C,(S) by, for any (resp. non-null, bounded above)
subset X of S,

X, = the set of all lower bounds of all upper bounds of X, if X is bounded,
= Sif X is unbounded (cf. BIRKHOFF [1], p. 58, DUBREIL- JACOTIN [2], p.37).
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An equivalent definition is: X,=N(y), (y) > X, if X is bounded, X =S if
X is unbounded ([3], p. 18).

Clearly {X,} satisfies C.1., C.2., C.3. and C.5.; for C.4., note that if X is
unbounded, so is a X, for any a in S, since y=ax, all x in X implies that
y. a is an upper bound of X. Further, if y is an upper bound of aX, y.-a
is an upper bound of X, therefore of X, and y is also an upper bound of 2 X ,.
It follows that (a X,),= (aX), and similarly that (X, a),=(Xa),.

Thus any (resp. directed 1) residuated semigroup may be imbedded in
a (resp. conditionally) complete (resp. semi) lattice semigroup with preservation of
existing least upper bounds, greatest lower bounds and residuals. In particular,
any (resp. directed 1) partially ordered group may be soimbedded ([3], p. 22) since
every partially ordered group is residuated with a."b6=547a and a".b=a b

A (resp. directed 1) partially ordered semigroup S for which the system
(resp. Cy(S)) C,(S) satisfies C.4. will be called (resp. restrictedly) quasi-
residuated, or (resp. r.) q. r. Not every (resp. r.) q. . semigroup is residuated;
in Example 2 below, S is (resp. r.) q. r., the v-ideals being: S, (m), (n), (a), (),
(2) and {a, b, z}, but neither a:a nor a:b exists.

EXAMPLE 2. I
I mn a b 2
I 1 I I I I =z ~ -
m I I I I I =z
w I I I I I =z
a I I I a a z a 6
b I I I a a =z
Z 2 2 2 % Z 2
z
Fig. 2

Further, a (resp. directed t) partially ordered semigroup S may contain
an ideal system without being (resp. r.) q.r.; in Example 3 define (resp.
C(S)) C,(S) as for finite semigroups. The r-ideals are: S, (m), (n), (a), (0),
(), (2), {a, 0,2z}, {b,c 2}, {a,c 2}, {a b, c 2}, and the v-ideals: S, (m), (n),
(@), (8), (¢), (2), {a, b,¢c,z}. Although the r-system satisfies the conditions
C.. ... C.5., the v-system does not satisfy C.4., since if X ={a, b}, X,={a,b,c, 2}
and ¢X,={a, c, z} while (cX),=(a).

EXAMPLE 3.

N O R IIMN

NN NN NNNN
NN N NNNNE
NN NN NN~ R
N R\ NNMNSR
NV KV IENNNS
N O/ K|NNNNDS
FOSE SR ST STE S S S N
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A given isomorphism ¢ between two (resp. r.) q.r. semigroups S and S’
may be extended uniquely to an isomorphism between (resp. C,(S)) C,(S)
and (resp. C,(S’)) C,(S’). If 4 is any subset of S, define 4 9 by 4 ¢'={a 9},
all 2 in 4; noting that y is an upper bound of 4 if and only if y'=9 ¢ is an
upper bound of 4 9, it is clear that §" is a (1 —1) mapping of (resp. C,(S))
C,(S) onto (resp. C,(S") C,(S"). Further, [X,] 9 = (X ), whence 9’ is an
isomorphism. Finally, ©' coincides with & on the principal ideals of S, and
is the only isomorphism to do so. (Note that X,= (U (x)),, x€X.)

THEOREM 3. Let S be a partially ordered semigroup which is imbedded as
in Theorem 1 in a complete lattice semigroup G. Then if C,(S) 1s defined as
in Theorem 1, the isomorphism of S into G may be extended uwiquely to
an isomorphism of C,(S) onto a sub complete lattice semigroup of G.

Proof. Define the mapping: 4: C,(S)—G by [X,]#=VX in G; 9 is
single valued, since VX =VX,. For any two subsets X and Y of G we have:

VXY=V {xléjxx Y} =x¥X{Vx Y} :xélx{x{v Y}}:{xélxx} {(VY}={VX}{VY}.
It follows that ¢} is a homomorphism, since:
[X,0 V)8 =[(XY),]#=VXY ={VX}{VY}=[X,]8[Y] 0,
and for 7 €1, _ _ .
[VX7]9 = V{UX}=V{VX'}=V{[X,] ﬁ},
and is (1 —1), for:

[X,] ¥ =[Y,] ¥ implies that VX =V Y whence X,=Y,.

Finally, 4 is the only extension of the isomorphism of S into G, for if x -/,
[(x)]9=4«', while if y is another such isomorphism,

[XJy=Y (Mp=Y ¥ =VX.

If a partially ordered semigroup S is isomorphic to a partially ordered
subsemigroup of the partially ordered semigroup S’, write SCS'.

COROLLARY 3.1. If S isimbedded in G, S’ in G', (notation as in Theorem 1),
where S and S’ are isomorphic and G’ is isomorphic to G under an extension o
of the isomorphism between S and S', then C,(S) is isomorphic to C,(S’).

Proof. There exist isomorphisms ¢#: C, (S) -G, a: G—>G"and p: C,.(S')—>G';
the mapping #oaoy™ is an isomorphism of C,(S) onto C,.(S’).

COROLLARY 3.2. If S is ymbedded as in Theorem 1 in G and S’ is a partially
ordered subsemigroup of S, then S' may be imbedded as in Theorem 1 in a
complete lattice semigroup C,.(S') such that C,.(S') CC,(S).

Proof. The argument is essentially that of Jarrarp ([3], p.52) who
shows that the system C,(S’) defined by X, =X,NS’ satisfies C.1.... C4.
(C.5. is obvious) and that the mapping #: C,.(S’) —C,(S) given by [X,]#=X,
is an isomorphism.
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The converse is not necessarily true; the subsemigroup {b, c, z} of the
semigroup S of Example 1 is q.r1., but S does not satisfy the condition of
Theorem 2.

DEFINITION. A (resp. conditionally) complete V-semilattice G 1s a (vesp.
restricted) V-completion of a subset S of G if, given g in G, there exists a (resp.
non-null, bounded above) subset X of S such that g=V X in G.

An A-completion is defined dually.

In Theorem 1, C,(S) is a V-completion of S since X,=(U(x)),, »€X.
(Identifying S with the set of principal ideals of S.)

LEMMA. Let a conditionally complete N-semilattice A be a restricted V-
completion of BCA, and write (a)’=BMN(a), for each a in A. Then (a) 1s
non-null, bounded above in B, and, in A, a=V (a)’. In particular, B is direc-
ted *.

Proof. There exists a subset X of B, bounded above in B, such that
a=VX. Then X (a)’, which is bounded above in B (by any upper bound
of X) and: @<V (a)’<a. To show that B is directed 1, take a=bvc (in A)
for given b and ¢ in B.

NoTe. We may deduce that if a partially ordered semigroup is imbedded
in any manner in a conditionally complete semilattice semigroup G which
is a restricted V-completion of S, then residuals existing in S are preserved
in G. For ax<b in G implies, since x=V SN (x);, that x=b."a in S.

Clearly S has a restricted completion by ideals which is both V- and
A-complete if and only if S is directed | and r. q. .

THEOREM 4. If a partially ordered semigroup S is imbedded as in Theorem 1
in a complete lattice semigroup G such that G is a V-completion of S, then G
is isomorphic to an ideal extension of S. Comversely, (as remarked above) every
ideal extension of S is a V-completion of S.

Proof. Suppose that G is a V-completion of S, and that S is imbedded
in G with preservation of least upper bounds; define C,(S) as in Theorem 1.
Then the mapping ¢: C,(S)—>G of Theorem 3 is an isomorphism of the
complete lattice semigroup C,(S) into G. That ¢ is onto G follows at once
from the fact that if g €G there exists a subset X of S such thatg=V X = [X,]9.

Section 3. Let C,(S) and C,(S) be two (resp. restricted) complete ideal
extensions of the (resp. directed 1) partially ordered semigroup S such that
the r-system is finer than the l-system (cf. JAFFARD [3], P. 18). That is,
for any (resp. non-null, bounded above) subset X of S, X,CX;. Then
X X,C X, implies that X, (X,),{(X;),=X, whence (X,),=X], and simi-
larly, (X;),=X,. Thus every l-ideal is an r-ideal and C,;(S) is a subset of
C,(S).

THEOREM 5. If the r-system is finer than the l-system, C,(S) is the homo-
morphic image of C,(S) under the only homomorphism which extends the identity
mapping of S onto itself (JAFFARD [3], p. 22).

Mathematische Zeitschrift. Bd. 79 30
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Proof. The homomorphism ¢ is defined by [X,]#=X,. If y is another
such homomorphism,

[X]p=[VXlp=Y (Mp =VX=X,

If ¥ is (1 —1) (or equivalently, if X,=7Y, if and only if X;,=Y)), the
systems coincide, for X;= (X)), implies X,=(X),=X.
Define the binary relation # on C,(S) by:

X,=Y,(#) ifandonlyif X,=Y,.

Then Z is a congruence relation on C,(S), and C,(S)=C,(S)/#%. If # is the
identity relation, C,(S)=C,(S). (See above.) Let y be the £ class of X,;
since (X));=(X,);, X,€yx. Further, if Y, ¢y, Y,((Y),=Y=X,, whence
Y, X, and each X, is maximum in its #-class. Thus, defining 4,."B,(4,". B,)
as the maximum Z, such that B,oZ,(A,, (Z,0B,(A,) we have, in the
complete case,

X =Y (#) if and only if for any W,cC,(S), W. X,=W,.'Y,,

W X,=W;".Y,) ([5], Theorem 2). Clearly this holds also in C,(S) if C,(S)
is residuated.

Let S be a (resp. directed 1) partially ordered semigroup which may be
imbedded as in Theorem 1 in a (resp. conditionally) complete (resp. semi)-
lattice semigroup. Then there exists at least one ideal system satisfying
CA....C5.; define the system (resp. C;(S)) C,(S) by, for any (resp. non-
null, bounded above) subset X of S, X,=NX, the intersection being over
all the ideal extensions (resp. C,(S)) C,(S). It is easily verified that (resp.
Ci(S)) C,(S) satisfies C.1. ... C.5.

COROLLARY 5.1. The system C;(S) is maximal in the sense that any other
ideal extension is the homomorphic vmage as in Theorem 5 of C(S).

Proof. The result follows immediately from Theorem 5 and the fact that
C;(S) is the finest ideal system.

DEFINITION. A V-ideal of a partially ordered set S is a subset I of S such
that:

(i) x€1l and t<x imply that t€1.

(@) If YCI and VY exists, then VY €I,

(Cf. BirknoFF [1], p. 21.)

In a (resp. directed 4) residuated semigroup S define (resp. C}(S)) C;(S)
by, for any (resp. non-null, bounded above) subset X of S, X,=NI, the
intersection being over all the V-ideals of S which contain X. (To each X
there corresponds at least one such I, namely, S.)

Clearly (resp. Cj(S)) C,(S) satisties C.1., C.2,, C.3. and C.5.; suppose
that W is a V-ideal containing a X, where a is any element of S. The set
of all {(w."a)}, where w € W, clearly contains X and satisfies (i); let b=VY
where Y ({(w."a)}. Each y€Y is in some (w.a), whence aycW, so that
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ab=VaY, which exists by Theorem 2, and belongs to W. It follows that
b€{(w. a)}, which is therefore a V-ideal containing X; thus Xy {(w. a)},
aX,CW and aXy(aX)p. Similarly X,al(Xa); since X, (X, Xy, (reSp.
Ci(S)) C,(S) is an alternative definition of the finest ideal system.

COROLLARY 5.2. In a q.r. semigroup S the system C,(S) is minimal in
the semse that if S is imbedded as in Theorem 1 in a complete lattice semi-
group G, then C,(S) is the homomorphic image, as in Theorem 5, of a sub-
complete lattice semigroup of G (cf. LORENZEN [4]).

Proof. The result follows from Theorems3 and 5 on noting that C,(S)
is the least fine ideal extension.

THEOREM 6. Let G be a complete lattice semigroup which is a N-completion
of the partially ordered semigroup S in which S is imbedded as in Theorem 1.
If S is similarly imbedded in a complete lattice semigroup G' where G'CG
under an isomorphism which preserves the identity mapping of S onto itself,
then C,.(S)=C,(S)=G.

Proof. By Theorem 3 and 4, with the usual notation, we have:

SCCS) (G CG=C,(S),

so there exists an isomorphism of C,.(S) into C,(S) which preserves the identity
mapping of S onto itself; as in Theorem 5, the only such isomorphism is
the identity mapping, whence the result.

It follows that G is minimal in an obvious sense.

Section 4. A conditionally complete V-semilattice group G is clearly a
conditionally complete lattice group, where, for example, x Ay=(x"vy™)7,
for any x and y in G. Such a group will be called a cl-group.

The set P(S) of all subsets of an arbitrary semigroup S, partially ordered
by inclusion, and with the obvious binary operation, is a residuated semi-
group where, for X and Y in P(S), XY (X.'Y) is the set of all elements
x in S such that Y <X (YxCX), or ¢ if this set is empty. If S is itself
partially ordered, and has identity element ¢, write:

X1=()".X, X,=(X?)* foreach XCS.

THEOREM 7. A given partially ordered semigroup S, with identity e, can
be imbedded as in Theorem A in a cl-group G, a restricted N-completion of S,
if and only if:
(i) S s directed 1.
(ii) For any a,b in S, and mnom-null, bounded above, subset X of S,
VaXb=a{VX}b wherever the right hand side exists.
(iti) For each X as in (i), X' ds non-null, bounded above, and coincides
with (e) . X.
(iv) For each a in S, {a},= (a)s.
(v) For each X as in (ii), X, X=X, X,=(e).

30*
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Then the sets {X,} form a restricted ideal extension on S, such that C,(S) is
a group, and any such cl-group G as above is isomorphic to C(S). In particular,
this is the only restricted ideal extension on S which can yield a group.

Proof. Suppose there exists a cl-group G, a restricted V-completion of S,
such that S is imbedded as in Theorem 1 in G. By the Lemma, S satisfies (i);
also, S is abelian ([7], p.234). For each non-null subset X of S, bounded
above in S, let X,=SMN(a)s, or (a)’ (in the notation of the Lemma) where
a=VX in G. Then the sets {X,} form, by Theorem 1, a restricted ideal
extension of S, giving (ii). Further:

X,:X,=(e)s... (1).

For, given x in S, x X, X, means that for any y in (a)’, xy=<a or: y<x'a
(! in G). Hence X is bounded above (in G) by x'a; that is: xa=a or
x<e. Clearly (¢)sCX,:X,. Also, with X and a as above, given y in S,
y€X1if and only if <y, all x€ X; that is: a<y™ or y<a™. Hence:

X1=(aY)...(2).

which, by the Lemma, implies both condition (iii) above and that VX'=a™.
Hence, (applying (2) to X in place of X), X,=(a)'=X,. So (iv) follows,
together with (v), (from (1)).

Conversely, let S by any partially ordered semigroup with identity e,
satisfying conditions (i)...(v). By (iii), the system {X,} obviously satisfies
C.1. and C.2. for a restricted ideal system (cf. [2], p. 154, noting in particular
that (X7),=X ’1). By (iv), C.3. is satisfied. Further, for any non-null,
bounded above subset X of S, and any « in S, we have, (with several appli-
cations of (iii)), that: (aX)?aX((e) implies: X ((aX)™a)?, implying in
turn X, (((@X)a)),= ((¢X)a)?; that is, (e X)aX,C(¢) or: aX,C(aX),.
Similarly X,a (X a),.

Again, with X as above, let Y be a subset of X, such that VY exists,
equalling 4. For any y in X,

by=VYy, byl(i,so by<e and bcX,.

Thus by (i), C;(S) is a conditionally complete semilattice semigroup. To
verify that this is a group, we use essentially the argument of JAFFARD ([1],
p. 26, prop. 4). If X is ¢-closed:

(XX)1=X,.X (cf[2], p.153)
=X, X,=(¢) by (v).
Clearly, (X X),=(e), the identity of C;(S). Similarly for (X1X),.
To complete the proof of the Theorem, we need only note that (with
the notation of the initial paragraphs) the mapping X,—a, or X,—a, is an
isomorphism of C;(S) onto G.

COROLLARY 7.1. A partially ordered semigroup S, with identity e, can be
imbedded as in Theorem 1 in a cl-group G, which is both a restricted N-completion
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and a restricted A-completion of S, if and only if conditions (i), (iii) and (iv)
above hold, together with:
()" Sisr.q.r
(v)! For each mon-null, bounded above subset X of S,
X, X, =X, X,=(e).

Then CL(S) is a group, to which any such group G as above is tsomorphic.
CL(S) is the only restricted ideal system on S which can yield a group.

Proof. 1f S is so imbedded, write ¢=VX for each non-null subset X
of S, bounded above in S. If x (in S)=a(=VX in G), x is an upper bound
of X,; hence x=c. That is (by the dual of the Lemma) a=¢, or: X, CX,.
Clearly X,CX,.

Conversely, to see the sufficiency of the conditions of the Corollary, we
need only note that if the sets {X,} form a restricted ideal extension on any
partially ordered semigroup S, it will be the least fine of them. For, given
any restricted ideal extension C,(S) on S:

(X1, X, (X X),(e);
that is: (XY),C (X)X

So each X1 is 7-closed, and hence each X,. Thus if Sis r.q.r., X,=X,.

COROLLARY 7.2. If S is a residuated semigroup with identity e 1t can be
imbedded as in Theorem 7 or as in Corollary 7.1 if and only if:

(1) S s directed *.
@) S is a group.
(v)" For each non-null, bounded above subset X of S,

X, X, =X, X,=(e).

Proof. Condition (iii) of the Theorem is clearly equivalent to:

(iii) e".a=e. a for each ain S. That is: e is equiresidual.

Also, for each a in S, e:a is clearly the maximum element of {a} and so
e:[e:a] is the maximum element of {a},. So condition (iv) of the Theorem
is implied by:

(iv)) a=e:[e:a] foreachains.

Conversely, (iv) implies: a=e:[e:a]=a.

Then, given that S can be imbedded as above, S is abelian and conditions
(v)' and (iv)" imply that S is integrally closed, with Artin’s equivalence
reducing to the identity. Hence S is a group (21, pp- 240—243).

Conversely, conditions (i)’ and (iv)’ are clearly satisfied if S is a group.

Conditions (i), (iii) ... (v) of Theorem 7 are sufficient that S may be
imbedded in a cl-group without least upper bounds existing in S being
necessarily preserved; hence we have:
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COROLLARY 7.3. Conditions (i), (iii) ... (v) of Theorem 7 are sufficient that
S be abelian, para-archimedean (or integrally closed in the sense of BIRKHOFF
[1], p. 229) and satisfy the condition:

for x,y,z2in S with x y<xz, y=z.

Note 1. It is immediately seen that condition (iii) of Theorem 7 need
not hold if S is imbedded in a cl-group G with preservation of existing least
upper bounds and greatest lower bounds where G is not a V-completion of S.
For example, let S be the semigroup of positive integers and G the group
of positive real numbers under multiplication, and ordered by magnitude.

NotE 2. It can be immediately verified that condition (ii)"” of Corollary 7.2
is necessary. For given a4 in S, there exists the element 2 in G such that
aal=e. Then:

al=c¢:a (in G) (see note to the Lemma in the preceding Section)
=e¢:a in S.

That is: a1 S.
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