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1. Introduction and notations

Throughout this paper X={x, y, ...} will denote a Hilbert space, L=
{T, S, Q, ...} the set of all linear continuous mappings of X into X, endowed
with the usual structure of a Banach space, o(7) and o0,(7) will denote the
spectrum of 7€ L and the point spectrum of T respectively. The symbol
+ (®) will denote the direct (orthogonal) sum of spaces or operators. All
operators considered are elements of L. An operator T is called regular if
the origin is not an element of ¢(7) and we say that two operators T;, 7,
are similar if there exists a regular operator S such that 7,=S"1T7;S. By
E we denote the identity operator and by Q, Q,, ... a bounded, regular,
positive definite selfadjoint operator. Finally, by N we denote a normal
operator and by » a natural number.

An operator T is called an n-th root of N if 7" =N holds. Also, S is called
a logarithm of N if expS=N. The main result of this paper (Theorem 1)
is that any #n-th root of a regular normal operator N is similar to a normal
operator R which is an #n-th root of N. This is a generalisation of results
of [7] and [4] to an infinite dimensional space. Furthermore in Theorem 2
we prove that every logarithm of N is similar to a normal logarithm of N.

In 3 (Theorems 4, 5), generalising the result of C. R. PurnaM [6], we find
a sufficient condition, in terms of the numerical range of T, for normality of
an n-th root T of a normal operator.

The author uses this opportunity to express his gratitude to the referee
for his helpful suggestions and especially for giving us, as presented in the text,
the short proof of Lemma 2, the original proof of which was much more
complicated.

2. A characterisation of the n-th roots of a normal operator
THEOREM 1. If T s an n-th root of a regular normal operator N, then there
exists a regular operator Q such that:
1.QN=NQ,
2. R=Q7TQ is normal and
3.R"=N,
i.e. every n-th root of N is similar to a normal n-th root of N.

1) This work was supported by the National Science Foundation, Grant NSFG 9423.
Mathematische Zeitschrift. Bd. 78 19
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For the proof of this theorem we need two lemmas.
LevMMA 1. If N and T are the same operators as tn Theorem 1, then

T=NyW=WN,,
where WE L is an n-th root of E and
Ny=["dE(3).
Here E(4) is the spectral resolution of the identity which belongs to N, and

A" is the n-th root of A the argument of which belongs to (— 7/, 7/n].

Proor. Since T"=N, the operator T commutes with N. This implies
that T commutes with E(4) ([1], [2]) and therefore T also commutes with
Ng'. Hence the operator W= T N;' possesses all required properties.

LEMMA 2. If W is an n-th root of E, then there exists a Q, such that

(1) Wy = QEI W Q,
is a unitary operator, W' =E and
) o) <I'={1,¢,...,6" "}

with e=exp (2xi/n) (Cf. [3], Theorem 1).
Proor. The spectral mapping theorem and

€) W"=E
imply o(W)<I" so that W is regular. But then (3) implies that the group
(W k=0, +1, +2,...}

is uniformly bounded. Now, the theorem of B. Sz.-Nacgy [10], applied to
the group {W*}, implies the existence of a (, with the property that the
operator W,, defined by (1), is unitary. Plainly (1) and (3) lead to Wg'=F
from which, by use of the spectral mapping theorem, (2) follows.

Proor oF THEOREM 1. According to Lemma 1 we have T=N,W=WN,,
where N, is a normal operator, and by Lemma 2 W= Q W, Qp* with

n—1
W,=Y e E,.
k=0

Here E, is the spectral resolution of W, and some of the projections E, may
vanish. If Y, denotes the range of E,, then X is the orthogonal sum of the
subspaces Y,. If we set X,=(Q,Y,, then

n—1 n—1
)(==:E 4'}(k’ PV:Z:Z: 4’6k11v
k=0 k=0

where P, is the restriction to X, of the operator QyE, Qg". If in each X, we
take an orthonormal basic set, then we get a basic set in X. The elements
of this set we denote by ¢, (y runs through some set of indices which depends
on the dimension of X only). Let ¢, be an orthonormal basic set in X. The
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linear operator S, defined by the relation
& = S,

has X as its domain. If x is a unit vector in X, then
n—1
X = Z 17- f]',
j=0

where f;€ X; are unit vectors and 4; are numbers. Since the Gram matrix
G=((f.1;)) is a positive definite matrix of the order #, every eigenvalue
of G is less than the trace of G which equals #». Hence we have:

n—1 n—1
ISt =3 141> 3 A2y, ) = - Jxp =
7=0 7=0

Thus S is a bounded operator. Now, we write: S1=HU, where U is a
unitary operator and H is a bounded, positive definite selfadjoint operator
([91, p- 332). For any x€ X we have |[H x| = |USx| = |Sx| <+, ie. the
domain of the selfadjoint operator H* is X. Thus Q=H™ is a bounded,
regular, positive definite selfadjoint operator with the property that

e}l, =0 &y
is an orthonormal basic set in X.
Since W commutes with N it also commutes with Ng. This and the fact
that x€X, if and only if Wx=¢"x implies that the X,’s are invariant for

N, and Ngf. Let R, be the restriction of N, to X,. Obviously R,, as an
operator in X,, is normal and

n—1 n—1 n—1
(4) T:Z—i_gkRk, N0:Z+Rky N::Z_FR:
E=0 E=0 k=0
hold. These relations imply
n—1 n—1
) N=Z+@®) ead N*=3 I ().
=0 =

A matrix of an operator 4 in the basic set ¢, we denote by A(e). From (4)
and (5) we see that T'(¢), N(e) and (N*) (e), as a direct sum of normal matrices,
are normal. Moreover [R,(e)]*=(RF)(¢) and (5) imply (N*)(e)=[N(e)]*?).
Let R be the normal operator to which, in the basic set ¢,, the matrix R(¢') =
T(e) belongs. Then

[R(e)]" =[T(e)]" =N(e)
[R*(¢)]" = N*(e).

which implies
Furthermore we have:

TQte =T e, =3 [T()ayea= 0 LTy = 0 SRy %k = 07 Re,

%) Notice that (T*)(e) is in general different from [T'(¢)]*.
19*
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and also

N* Qe = 0 URM e,
Thus
(©) T=Q?'RQ, N*=QM*Q,

where M =R" is a normal operator. By 7*=N and the conjugation of the
second equation in (6) we get:

(7) N=QMQ, N=QMQ™
From (7) we find
Q*M =M Q2.

Since the bounded operator M commutes with Q2 and since Q>0 we conclude,
([11, [2]), that M also commutes with (, which, together with (7), implies
N=M. Thus R is an n-th root of N, it is normal and T is similar to R.

COROLLARY 1. Any n-th root of a unitary operator V is similar to a unitary
n-th root of V.

COROLLARY 2. Any square root of a Q is similar to a selfadjoint square
root of Q.

These corollaries are direct consequences of Theorem 1. Corollary 2 can be
directly proved in a very simple way. Indeed, suppose that 72— Q and by
@, denote the unique positive definite selfadjoint square root of Q. We have

expitT=cost Q+1 7T Qi'sint Q,
which implies
sup [expi¢ T|| < + oo,
tec

where C is the set of real numbers. By the theorem of B. Sz.-Nacy [10],
there exists a Q, such that Qg'expi¢T Q, is a group of unitary operators.
Thus H= Q5" T Q, is selfadjoint. From here we get

H?= EIQQo and Q‘;IQQ():QOQQEI,
20Q=00Q, and H2=Q.

TueoREM 2. If N=expT is a normal operator, then a Q exists such that:
1.QN=NQ,
2. R= Q1T Q is a normal operator and
3.expR=N,
v.e. every bounded logarithm of a normal operator N is similar to a normal
logarithm of N3).
Proor. Since N=expT is normal and T €L, we have T=Ny+2miW,

where N, is a normal operator, exp Ny= N and a bounded operator W commutes
with Ny. Moreover, there exists a Q, such that W,= Qg'W @, is a selfadjoint

%) Observe that in the proofs of Theorems 1, 2 the group property of functions A"
and exp A are essentially used.

Thus
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operator with the property that o (W) is contained in the set of all integers
([5], Theorem1). Using this result, in the same way as in the proof of
Theorem 1, we prove Theorem 2.

ReEMARK 1. The condition of Theorem 1 that N is regular is essential,
because the square of the matrix

T— (0 O)

10
is a normal matrix, but 7 is not similar to a normal matrix. On the other
hand, if we assume that the origin is an isolated point of ¢ (N), then X = X,® X,
with X as the null space of N. The equation 7”=N reduces to T¢=0 and
I'=N,, where T;, N; (=0,1; N;=0) are restrictions of T, N to X;, and
the operators NV, and 7 satisfy all conditions of Theorem1 (Cf.[4]). The
case in which the origin is not an isolated point of ¢ (N) seems to be difficult.
But if N is a compact (completely continuous) normal operator, then we have:
THEOREM 3. Let X be a separable Hilbert space and TEC L. Suppose that

there exists an entive function

fA) = Zla,, A"
such that

N=f(T)=§oc,,T”

s a compact normal operator with the property that zero is not an eigenvalue
of N and that {'(A) £=0 for any A€o,(T). Then there exists a normal operator
R and a positive definite selfadjoint operator H such that:

1. The origin is not an eigenvalue of H,

2. HN=NH,
3. HR=TH and
4. f(R) =N.

Proor. The assumption about N implies:
o0 o0
N=Z®}‘kEk’ X:kZ®Xk, ﬂk=1=0
k=1 =1

where E, is the identity operator defined on a finite dimensional subspace
X,. Since T and T* commute with N we have

T — Z @ I;;l
E=1
where 7, is the restriction of T to X;. Now f(T)=N implies f(T};) =, E;,
k=1,2,.... The fact that f/(4)==0 for A€0,(T) implies that the Jordan

form of S, is diagonal. Hence, there exists an operator T,:X,—X, such
that M,=S;'7,S, is a normal operator. Taking S, in a suitable way we
conclude that

M=Y®M, and S=)®S,
k=1 k=1
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are bounded operators, f(M)=N and SM=TS. On the other hand, from
the definition of S it follows that SN=NS. If we write S=HU with a
unitary operator U and a bounded positive definite selfadjoint operator H,
then we find that H and R=UM U* satisfy all assertions of Theorem 3.

REMARK 2. The assumption about f* in Theorem 3 is essential, because

f(T)=T%—2T for
T (1 0)
11

is normal, but T is not similar to a normal matrix. Moreover, for any operator
T in a finite dimensional unitary space, there is a polynomial f :4= 0 such
that f(T) is a normal operator and f(0)=0.

3. A sufficient condition for normality of an n-th root of a normal operator
THEOREM 4. Suppose that T is an n-th root of N and N regular and normal
as in Theorem 1, and that there exists a real number o such that for every unit
vector x € X
arg (T x, x) € (o, & + 27t/n)

holds, where arg a denotes the argument of a number a. Then, T is a normal
operator. (For the case n=2 see [6].)

Proor. The operator ;=T exps(—a —z/n) has the property that 77
is normal and arg(7; x, %) € (— n/n, /n). Therefore it is sufficient to prove
that 7, isnormal. Because of this, in the sequel we assume 7, =T, i.e. x =— /.
Denote by £ the open set of all complex numbers a such that arga € (— n/n, 7/n).
Obviously for any x€ X, x==0 we have

(8) (Tx,x)€Q.

The normal #-th root of N introduced in Lemma 1 possesses the property
that

) (No %, x) €2
for any x, where £ denotes the closed set determined by 2. Now, (4) implies
(10) (T %, x) = ¥ (N, x, x)

for any x€X,. From (10), (9) and (8) we conclude that 2=0, i.e. T=N;,.
It is also seen that NN, is a unique root of N with the property that (8) holds.
In the proof of Theorem 4 it was essential that the set £ be open. In
the next theorem we prove a similar theorem assuming less about £ but
more about N. We have:
THEOREM 5. Let N be a compact normal operator and T an n-th root of N.
Suppose that there exists a real number o such that for every unit vector x € X

arg (T x, x) € [o, o0 + 27[n]

holds. Then T is normal.
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For the proof of this theorem we need the following

LeMMA 3. If P is an operator with the property that

1. Re(Px, x)=0 for all xcX and

2. P"=0, then P=0. Here Re A denotes the real part of 4.

Proor. Suppose that Lemma 3 does not hold and by m=2 denote the
natural number m with the property that P®=0 and P™ '4-0. Let X, be

the null space of P and X;=X0©X,. If ecX, and ¢'€X,, then for any
complex number @ we have that

(Plae+¢e), ae+e)=a(Pe,e)+ (Pe,¢)

is in the right half plane. But this is possible only if (Pé’, ¢)=0. Hence X,
is invariant for P. If B denotes the restriction of P to X, then P"=0 and
also P~'=20. There exists, therefore, an x€X such that ¢'=PP x40
and Be'=0. This implies Pe'=0, ¢'€X;, ¢’ 40 which contradicts the defi-
nition of X,. Thus P=0.

Proor oF THEOREM 5. The restriction of T to the null space of N satisfies
the conditions of Lemma 3 and therefore it is a normal operator. Applying
the same considerations as in the proof of Theorem 3 to the restriction of N
and of T to the orthogonal complement of the null space of N, we conclude
that it is sufficient to prove that:

If X is an m-dimensional unitary space and 7:X —X an operator such
that (T #, x) €0 for every x€ X and T"=AE 50, then T is normal. In order
to prove this, denote by ¢, ..., ¢, an orthonormal basic set in X with the
property that o, _ ir{giu=0 ¥ i=i<ism,
where T'(e) is the matrix of T in this basic set [8]. If

x=Me+Aig, 1=k<j=m,

then

(11) (T, %) =typ| a2+ 4| 4]* + b5 Ay €2

for all complex numbers 4, 4;. If 4 possesses an n-th root which is in the
interior of 2, then this root is unique and we have ¢;,=-.- =t,,,=t. Since

T possesses a single eigenvalue ¢ and since it is similar to a normal operator
(Theorem 1), it is a normal operator. If A does not possess an #-th root in

the interior of £, then it has two roots on the boundary of 19} ; we denote
them by

(12) x=pexp(—imn), P=opexpimn, o=]|A""
Suppose that #,,=t;,=f, and take 4, ; such that arg?;, +arg, —argd;=m.
Then (11) becomes: =

B(I2[2+ 1 412) — [t 2 4] €2

which is possible only if ¢;,=0. The same holds if #,, =?;;=a. Now, suppose
that £,,=a, ;;=p and £;,50. Set u=2¢]|¢;;|, 4;=p and 4, =expi (7w —zx/n —
argt;,). Then (11) becomes: —a-+Bu? which is not in Q if n>2. If n=2,
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then we take 1, =expi (n — n/n — argt;,+ ¢) where 0< e<z/2. Using the fact
that in this case a=—1g and f=1p, (11) gives: —ip(1—2expie)+pu2cR
which is impossible because the real part of this number is —2p sine< 0.
Therefore the assumption 7, 40 leads to a contradiction. In the same way
be=P, tjj=a leads to #;,=0. Thus the matrix T'(e) is diagonal which, by
virtue of the fact that ¢, ..., ¢, is an orthonormal basic set, implies that
T is a normal operator.
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