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By Alfred Geroldinger and Franz Halter-Koch at Graz and Jerzy Kaczorowski at Poznan

§ 1. Introduction

Let K be an algebraic number field and o a (not necessarily principal) order in K.
Then o is a one-dimensional noetherian domain and its integral closure is the ring ox of
algebraic integers of K. Every non-unit 0 % u € 0 possesses a factorization into irreducible
elements of o; in general, there are several distinct such factorizations. If o = oy, then the
class group of K measures the deviation of o from unique factorization; cf. [3] or [22], Ch.9
and the literature cited there for the interdependence of phenomena of non-unique fac-
torizations and the structure of the class group. If o + o, then the factorization proper-
ties in o do not depend only on the class group Pic(o) of invertible ideals of o, but also on
the structure of the local rings o, for the primes p dividing the conductor of o; cf. [1], [4], [5]
or [16] for some results in this direction (which are far from being as complete as in the
case o = og).

Quantitative aspects of non-unique factorizations were first considered by E. Fogels
1943 in a special case and then investigated in greater generality by W. Narkiewicz, J. Sliwa
and the authors; see [13], [17], [18] or [22], Ch. 9 for detailed references. In this paper we
shall extend these quantitative investigations to non-principal orders. For o as above and
k e N, we shall investigate the following sets (which are well-studied in the case o = oy):

M, (o), the set of all € o having only factorizations of lengths / < k;

G, (o), the set of all u € o having factorizations of at most k different lengths;

F,(0), the set of all u € 0 having at most k distinct factorizations.

If Z is one of these sets and x = 1, then Z(x) denotes the number of principal ideals
uo of o such that ue Z and (o : uo) £ x. It turns out that Z(x) has, for x — oo, the same

type of asymptotic behaviour as in the case o = oy, namely

Z(x) ~ Cx(logx)~“(loglog x)®,
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where C is a positive constant, 0 < 4 <1 and Be N,,. The reason for this behaviour lies
in the fact, that besides of the finitely many prime ideals dividing the conductor of o the
arithmetic behaves exactly as in o,. The point is to show that the influence of these finitely
many prime ideals is small enough to obtain the same asymptotic results as in the case
o = og. In fact, we shall prove stronger results, giving not only the main term but also the
remainder term of the asymptotic behaviour; see Theorems 10, 20 and 3o (for o = oy this
was done in [18]). '

It turns out that the asymptotic behaviour of Z(x) is not a typical result of algebraic
number theory. It holds for more general structures including orders in holomorphy rings
of global fields and certain types of submonoids defined by congruences (so-called gener-
alized Hilbert semigroups); the main results in this general context are Theorems 1, 2 and
3. We proceed axiomatically, a method which already proved its worth in [7], [13] and [17].
The main argument for the use of the axiomatic method in this context comes from the fact
that it allows us to describe and investigate the combinatorial structures which are re-
sponsible for the various phenomena of non-unique factorization. Only in a second step we
show how to realize these combinatorial structures in one-dimensional domains, and in a
third step we use some (rather simple) arguments from (abstract) analytic number theory to
derive the main results for arbitrary orders from those of principal orders.

In § 2 we start with some preliminaries on monoids; then we introduce the notion of an
arithmetical order formation which is fundamental for the whole paper. In §3 we discuss
congruence monoids in Dedekind domains and in particular in holomorphy rings of global
fields, which are in the center of our interest. § 4 contains the main results of our analytical
theory; these will be applied in § 5 to obtain asymptotic results for the sets M,, G, and F,
in order formations.

In the asymptotic analysis, we use simultaneously the notions f < g and f= O(g)
and we write f<g for f<< g and g < f. Whenever a complex logarithm appears, we
mean that branch which is real for positive arguments, and we put z¢ = exp(¢logz). N
denotes the set of positive integers, and N, = N U {0}.

§ 2. Preliminaries. Order formations

Throughout this paper, a monoid is a multiplicatively written commutative and can-
cellative semigroup H with unit element 1 e H. We denote by H™ the group of invertible
elements of H, and we call H reduced if H = {1}. We use the standard notions of divisibility
theory as developed in [9], § 6.

If H, and H, are monoids, then H, X H, denotes the direct product of H, and H,;
we view H, and H, as submonoids of H, x H, so that every ue H, X H, has a unique
decomposition u = u, u,, where u; € H;. For a family (H,),., of monoids, we denote as

usual by [] H, their (outer) direct product consisting of all families (a;);.,, Where
AeAdA
a, € H;, and we set

I H, ={@)ica€ [] Hila;, =1 for almost all AeA}.

AeA AeAd
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For a set P, we denote by % (P) the free abelian monoid with basis P; every a € & (P) has
a unique representation

a= l—l pvl’(a) A

peP

where v,(a) e N, and v,(a) = 0 for almost all pe P.

Let D be a monoid and H < D a submonoid. On D, we define the congruence modulo
H by

a=bmod H ifandonlyif aHNbH=+0;

this is a congruence relation on D, and we denote by D/H the factor monoid (consisting
of all congruence classes g = D); H is called saturated (in D), if H = {ae D|a = 1mod H}
(equivalently: @, be H and a|b in D implies a|b in H).

For the following notions concerning monoid homomorphisms, we refer to [6]. A
monoid homomorphism ¢ : H — D is said to be

1. cofinal, if for every a € D there exists some u € H such that a|¢ («) (equivalently:
D/@H is a group);

2. a divisor homomorphism, if u,ve H and ¢ (u)|¢(v) implies u|v (cquivalently:
@ H <= D is a saturated submonoid, and ¢ induces an isomorphism H/H* =% ¢ H);

3. adivisor theory, if D = % (P) is free abelian, ¢ is a divisor homomorphism, and for
every p € P there exist u,, ..., u, € H such that p = gcd{p(u,), ..., ¢(u,)} (then ¢ is also
cofinal).

Deﬁnition 1. An order formation [# (P), T, H] consists of a free abelian monoid
Z (P), a reduced monoid T and a saturated submonoid H = & (P) x T, such that

G=(FP)xT)/H

is a group. We write G additively and call it the class group of the order formation
[#(P), T, H]; for ae & (P) x T, we denote by [a] € G the class containing the element a.

The idea behind the above definition is the following: we intend to investigate the
arithmetic of the monoid H by means of & (P) x T, where T is assumed to be small. The
most important examples of order formations arise from congruence monoids in Dedekind
domains and in particular from the multiplicative monoids of one-dimensional noetherian
domains. These will be discussed in § 3. Here we present some examples in the context of
general monoids.

Examples. 1. If : H —» % (P) is a divisor theory, then [#(P), {1}, 0 H] is an order
formation.

2. If ¢: H— T is a cofinal divisor homomorphism, then [{1}, T, ¢ H] is an order
formation.
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3. Let G be a finite abelian group, T a reduced monoid and 1: F(G)XT > G a
monoid homomorphism such that :(g) = g for all ge G. Let

B(G,T,1)={ae F(G) xT|i(a) = 0}
be the T-block monoid; then [# (G), T, #(G, T, 1)] is an order formation by [5], Prop. 1.

The following lemma strengthens the conception that an order formation is like a
divisor theory with some obstruction.

Lemma 1. Let [# (P), T, H] be an order formation with class group G. Then the em-
bedding i: Hn % (P) - F(P) is a divisor homomorphism. If gnF (P) + 0 for all geG,
then i is cofinal and G ~ % (P)/(H % (P)). If furthermore gn P * 0 for all g € G, and if
in the case # G = 2 the non-principal class g € G satisfies # (g P) = 2, then i is a divisor
theory.

Proof. Since H < # (P) X T is saturated, HN % (P) c &% (P) is also saturated, i.e., i
is a divisor homomorphism. If g # (P) + 0 for all g € G, the canonical homomorphism
F(P) » F(P) x T - G is surjective and induces an isomorphism & (P)/(Hn % (P)) 3 G.
If we identify the two groups by means of this isomorphism the final assertion follows from
[13], Lemma 1. O

Next we introduce norms on order formations in order to develop analytical results.

Definition 2. Let T be a reduced monoid. By a norm function on T we mean a
monoid homomorphism |- |: 7 — N satisfying || =1 if and only if = 1.

Definition 3. By a small arithmetical monoid [T,|-|] of rank re N we mean a
reduced monoid T, together with a norm function |- | on T satisfying

#{teT||t| = x} < (logx)"

for every x = 2.

Definition 4. An arithmetical order formation [¥ (P), T, H, | - |] (of rank r € N) con-
sists of an order formation [#(P), T, H] with finite class group G = (#(P) x T)/H,
together with a norm function |- | : #(P) X T — N satisfying the following two properties:

1. For every g € G, there is a complex function A, (s), regular in the half-plane Rs > 1
and also in some neighbourhood of s = 1 such that

1 1
|p|I™* = —log —— + h,(s)
p:,;n, #G “s—1 ’
holds for Rs > 1.
2. [T,|-]] is a small arithmetical monoid (of rank r).

Remark. If [#(P), T, H,|-|] is an arithmetical order formation, then
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[#(P), F(P)nH,||]

is an arithmetical formation in the sense of [13], Def. 2, with the same class group.

§ 3. Congruence monoids
For an integral domain R, let R* = R\ {0} be its multiplicative monoid, R* = R"* its
group of units, 2 (R) the set of all maximal ideals of R and #(R) the monoid of integral
invertible ideals of R. Our standard references for ideal theory are [19] and [20].
Now let R be a Dedekind domain; then #(R) = # (2 (R)). Let
*=fo, ... 0,
be a cycle of R, i.e., {* is a formal product of an ideal { e #(R) and m = 0 distinct ring

monomorphisms @, ..., ®,, : R - R; see [11], Def. 4. For 1 < i < m we set g; = sgn o w;
where sgn : R — {0, +1} denotes the signum function. Let

r*c®R/fHx{£1}"
be a multiplicatively closed subset, and let I' = R/{ be the image of I'* under the pro-
jection (R/f) x {+1}™ — R/f. We suppose that I'n(R/f)" is a subgroup of (R/f)"; if
R/ is finite, this is equivalent with I'n(R/f)* @ or 1 + fe I'. Then we call
H={aeR|(a+7,0,),...,0,(@) ¥}
the congruence monoid of R modulo {* defined by I'*.

With H as above, we associate a divisor homomorphism @ as follows:

Suppose that f=p$'-...-pf, where r =0, py,...,p,€ 2(R) are distinct and
ey, ...,e,€N. Weset P = 2(R)\{p,, ..., p,}; then F(P) = £ (R) = F(R) is the monoid of
integral ideals relatively prime to f. By localization and the Chinese remainder theorem,
we obtain a surjective mapping

n: [1 R, = [1 R,./p*R, > T R/pi* = R/f.
i=1 i=1 i=1
We set
U=n'"c []| R;,, and T=U/U".
i=0

For later use, we observe that

r

U*=Un ] R, =n"'@™) =7~ (T RID),

i=1

7 Journal fiir Mathematik. Band 459
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and therefore

I_CI (1 + p‘e‘Rﬂi) = U" °

For ae H, we have a+ fe I, and consequently (a,...,a)e Uc [] R;; we set
i=1
A(@ =(a,...,aq)U*eT,
and we define 0: H - #(P) X T by

0@ = (J] p*“NA(@eF(P)xT.

peP

We call 0 the canonical divisor homomorphism associated with H.

Proposition 1. The canonical divisor homomorphism 0: H - % (P) X T, associated
with a congruence monoid H as above, has the following properties:

(i) 0 is a divisor homomorphism.

(ii) For every ae & (P) X T, there exists some c € ¥ (P) such that ace 0H.

(iii) G = (F(P)xT)/0H is a group, and for every g € G we have g nF (P) + 0.
(iv) A(H)=T.

) [#(P),T,0H] is an order formation.

Proof. (i) If a,be H and d(a)|d(b), then v,(a) < v, (b) for all p € P and A(a)|A(b);
the latter relation implies v, (a) < v,,(b) for 1 < i < r, and therefore a|b.

(i) Let
a=([] p*)-(ay,...,a) U €eFP)XT

peP

be given, where e, e N,, e, =0 for almost all pe P and (a,,...,4)eUc [1R;, If
i=1

a; = u; 'c; (where c;€ R* and u; € R\p,), let y, € R be such that u;y;, = 1 mod p{’; then we

have (4, yy,...,u,y,)€ [ (1 +pf'R,) = U*, which implies

i=1
€1y y)U =(ay,...;a) U cU
and therefore n(c,y,,...,c,y,)€l. Let g, ...,¢,€ {11} be such that
(R(CyY1s s CoWp)s Bys-nes &) €ET*;

by [11], Satz 6, there is some a € R"® satisfying
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a=cymodpfi*t» for 1<igr,
v,(@)2e, forall peP and

oi(a)=¢ for 1<j<m.
Since a+f=mn(a,...,a) =n(c,y,,--.,¢,»,), we infer ae H. Moreover,
a=cq)y; modpf‘+"’l‘°‘)
implies ae c;y; (1 + p{*R,), and hence
A(@=@,...,a) U =(cyyyy..., 6,9 ) U™ = (ay,...,a)U*.

If c= [] p»®@ % e F(P), then ac = d(a) e 0H.

peP

(iii) Let g = [a] € G be given, where a € # (P) x T. By (ii), there exists some c € # (P)
such that ac e 0 H, whence [c]+ g =0 and ce (—g)nF (P).

(iv) If teT, then (ii) implies the existence of some ce % (P) and ae H such that
tc = 0(a), whence ¢ = A(a).

(v) is obvious by (i), (ii) and (iii)). O

Corollary 1. Let H be a congruence monoid and 0: H - % (P) X T the canonical
divisor homomorphism as above. Then

H,={aeH|aR+{=R}
is a submonoid of H,
Hy={aeR'|(a+1,0,),...,0,@) e T*A((R/D)* x {£1}")} = 0~ (F(P)),
0|H;: H; — % (P) is a divisor homomorphism, and there is a natural isomorphism
F(P)|oH, > (F(P)xT)/oH.

Proof. Since 0HN % (P) = 0H,, the assertion follows from Proposition 1 and
Lemma 1. O

Remark. In Corollary 1, H; is a generalized Hilbert semigroup in the sense of [11]; if
I'<(R/f)", then H = H,. If R is a holomorphy ring in some global field, then H;/H," is a
generalized Hilbert semigroup in the sense of [13].

Examples. 1. The most important examples (in fact the impulse for that theory)
arise from orders in global fields and will be discussed in detail later on; cf. Definition 5 and
Proposition 4.
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2. Supposethat R=27Z,f=fZ, where feN, f = 2, and {* = foo, where 0 = (Z ¢ R).
IfI' = Z/fZ is multiplicatively closed, 1 + fZe F'and I'* =I'x {1} = Z/fZ x { + 1}, then

H={aeN|a+fZerl}.
We identify #(Z) with the set P of all prime numbers; then we obtain
P={pePlpkf}, F(P)=NP ={aeN|(@,f)=1}
and H;; = {ae H|(a,f) =1}.1f 8: H - N x T is the canonical divisor homomorphism

associated with H, then 9| H;; = (H;z & N); it is well known that this is a divisor theory
with class group

G~(Z/fZ)|(IrnZ/fZ)*)

cf. [10], Beispiel 2. By Corollary 1, G is also the class group of the order formation
[NV T, H].

As a simple example, let us discuss the case
f=3, I'={3Z,1+32}<Z/3Z, H={aeN|a% —1mod3}.
We have U = {a€Z3)|la £ —1mod 3Z )}, and
{£3"lneN}u{1}cU
is a set of representatives for U/ U ™. Since this is multiplicatively closed, we may identify T’

with this set of representatives and obtain T = [3, — 3] (the multiplicative submonoid of Z
generated by 3 and —3). The divisor homomorphism 8 : H - N® x T is given by

b, if n=0,
03"b) =4 b-3", if n>0, b =1mod3,
b-(=3", if n>0, b=—1mod3

(where ne N, and b e N®). The class group G satisfies
G~(Z/32)|(I'n(Z/32)) =(Z/32),
hence # G = 2, and if we identify G with Z/2Z, then the canonical epimorphism
[(]1:FP)xT=N®x[-3,3] - G=12Z/2Z

is given by
[CIT pP((=D3)]=et+ T e+2Z

3+ peP peP
ps=—1mod3

(where e, € Ny, e, = 0 for almost all pe P, ne N and ee {+1}).
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Now we continue our general investigations and suppose that R is a Dedekind
domain satisfying (R : p) < co for all p € Z(R). Then we have (R : I) < oo for all /e #(R),
and (R: V) = (R:I)(R:J) for all 1, Je #(R), cf. [22], Ch.1, §1. Moreover, if p e 2(R)
and ae R, then (R, :aR,) = (R:p)”® < 0. Let H< R* be a congruence monoid and
0: H— % (P)xT the canonical divisor homomorphism as before. We define a size func-
tion (called canonical in the sequel)

|“|: #FP)xT->N
by

(T p™)(@ys .. ) U = [ R: 9 [] R, :aR,)
i=1

peP peP

r
(since U* < [] Ry, this definition does not depend on the representative (a,, ..., a,) of
i=1

@y, ...,a) U*eT).

Proposition 2. Let R be a Dedekind domain satisfying (R : p) < co for all p € Z(R).
Let Hc R® be a congruence monoid and 0 : H - % (P) X T the canonical divisor homo-

morphism as above. Then the size function |-|:% (P)*xT — N has the following pro-
perties:
i) | |:#FP)XT - N is a norm.

(i) For Ie #(R) = #(P), we have |I| = (R:I).
(iii) For ae H, we have |0(a)| = (R : aR).

@iv) [T,|-|] is a small arithmetical monoid of rank r.
Proof. (i) and (ii) are obvious.

(iii) For ae H, we have

0@ = |(I] ") (@,...,a) U) | = [] R:p)*®- .];[1 (Ry,:aR,)

peP peP

= [] (R:p)*@=(R:aR).

pe?(R)

(@iv) For 1 £i<r, the group R, /(14 p{‘R,) is finite, since R, /p{'R, =~ R/p;* is
(cf. [23], Kap.II, 3.10). Let o; ,, ..., o 5 € R, be a set of representatives of

Ry /(1+P{R,),

and let m; € R, be a prime element. Since

[1+psR,)cUcUc [] R;,,
i=1 i=1
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every teT is of the form

x
t=may ..y, U

(where n,,...,n.€ Ny and 1 £ v; £ N,), which implies

1= TT Ru: R, = [T R: ™.
i= i=1

If |¢| £ x, then n; < [log(R: p;)]~'logx, and consequently

r

#{teT||t|<x} < (1:[1 ﬁ%p—i))(logx)’. o

A global field K is either an algebraic number field or an algebraic function field in
one variable over a finite field. Let ¥ (K) be the set of all non-archimedian places of K. For
ve ¥ (K), let R, be the valuation ring, B, the valuation ideal and |v| = (R,: *B,) the
cardinality of the residue field of v. Let S =« & (K) be a finite set, S + @ in the function field
case, and set ‘

Ry= () R,cK;
ve ¥ (K)\S

Ry is called the holomorphy ring of K associated with S. It is a Dedekind domain with
quotient field K, 2(R;) = {B, N Rg|ve F(K)\S}, and for every ve #(K)\S we have

(Rs:PB,NnRg)=|v|<00.

(For the function field case cf. [2], Ch. 2.7 or [25], Ch. 3.2; in the number field case Ry is
just the ring of algebraic integers in K and Ry is an overring of Ry, cf. also [26], Ch.4.)

Proposition 3. Let R be a holomorphy ring in a global field, H < R® a congruence
monoidand d . H - & (P) x T the canonical divisor homomorphism. Then (¥ (P), T, 0H, |- |]
is an arithmetical order formation.

Proof. By Proposition 1, [#(P),T,0H] is an order formation. By definition,
OHN % (P) is a generalized Hilbert semigroup in R in the sense of [13], and therefore
[#F(P),0HN % (P),|-|] is an arithmetical formation by [13], Proposition 3. Let

G=(FP)xT)/0H
be the class group of [# (P), T, 0H]. By Corollary 1, we may identify G with
F(P)/(0HNF (P)).

Since [# (P),0HN # (P),|-|] is an arithmetical formation, G is finite and condition 1 of
Definition 4 is fulfilled. By Proposition 2, [T, |-|] is a small arithmetical monoid. O

Finally, we are now going to discuss orders in Dedekind domains.
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Definition 5. Let R be a Dedekind domain. By an order o in R we mean a subring
o < R such that R/o is a finitely generated torsion o-module. The ideal f = Ann,(R /o) is
called the conductor of o (clearly, f = {a€ R|aR < o} is the greatest ideal of R lying in o).

The above definition is very sparse; the following lemma shows that it coincides with
the usual concept.

Lemma 2. Let o <= R be integral domains. Then the following two assertions are
equivalent:

(@) R is a Dedekind domain and o is an order in R.

(b) o is a one-dimensional noetherian domain, R is the integral closure of o (in some
quotient field of o), and R is a finitely generated o-module.

Proof. (a) = (b) Since R/o is a torsion o-module, the quotient fields of R and o
coincide, and since R/o is a finitely generated o-module, the same is true for R. Therefore
o is noetherian by the Eakin-Nagata theorem, R is the integral closure of o, and in parti-
cular we have dim (o) = dim(R) = 1.

(b) = (a) RisaDedekind domain by the Krull-Akizuki theorem, and obviously R /o
is a finitely generated torsion o-module. O

Lemma 3. Let R be a Dedekind domain and o = R an order with conductor f.

(i) Let $,(0) = {Ie F(0)|I+f =0}, Z(0) = {qe P(0)|q + =0} and T (0) = F(0)
the submonoid generated by the multiplicative irreducible elements q € # (o) with

Va e2(©)\%().
Then (o) = £(0) X 7 (0) and $,(0) = F(Z(0)).
(i) If (R:p) < o for all p e P(R), then we have, for all J e #(o),
(R:JR) =(0:J).

Proof. (i) Since o is a one-dimensional noetherian domain, the monoid #(o) is
generated by its irreducible elements, and every irreducible element q € .#(o) is a primary
ideal. The set of prime elements of .# (o) is just (o) N # (o) and from [23], Kap. I, 12.10 and
Aufgabe 5, it follows that (o) N .#(0) = % (o). Obviously, £ (o) is generated by % (o) and
hence S, (0) = # (£ (0)). Finally we infer .#(0) = #(0) X 7 (0).

(ii) Suppose first that J = ao for some a € 0. Then JR = aR, and multiplication with
a induces an isomorphism R/o =% aR/ao. Let { be the conductor of o; since f = o = R and
(R:{) < o0, we infer (R: 0) < oo and therefore

(R:aR)(@R:avo) = (R:ao) =(R:0)(0o:ao),

which implies (o0 : ao) = (R: aR).
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Now we turn to the general case. By [23], Kap. I, (12.3), we have

o/J=~ [] o,/J0,,

qeP (o)

and consequently

R/JR~o/J®R=~ [] o,/Jo,®R.

o qe? (o)

For q € #(0), o, is an order in R, and Jo, = a,0, for some a, € J, which implies
0,/Jo, @ R~R /a,R,,
and consequently

(R:JR)= [] Ry:a,R)= [] (0,:a,0)=(0:J). O

qe?(0) qe2(0)

Remark. In general o/J is not isomorphic to R/JR as can be seen from the follow-

ing example: consider o =Z[}/ 3], R=Z [1—+E] and J=(1+]/—3)o; then

2
JR=2R,R/JR~Z/2Z*Z2Z but 0/J ~ Z]4Z since 2 ¢ J.

Proposition 4. Let R be a Dedekind domain and o — R an order with conductor §.
(i) o° is the congruence monoid of R modulo | defined by o/f = R/f.

(ii) Let S (o) be the monoid of integral invertible ideals of o, and let 0:0* - F(P) X T
be the canonical divisor homomorphism. Then there exists a (natural) isomorphism

0:F() S FWP)XT
such that @ (ao) = 0(a) for all ae o* and ¢ (J) = JR for all J € £ (0). Moreover, ¢ induces
an isomorphism ¢* :Pic(o) ~ G between the Picard group of o and the class group
G=(FP)xT)/oo".
(iii) Suppose that (R : p) < oo for all p e P(R); then we have

lo(/)|=(0:J)=(R:JR)
for all Je #(o).

Proof. (i) is obvious.

(ii) We set f = p$'... pf and use all notations introduced at the beginning of § 3 and
in Lemma 3. We set {p,no,...,p,Nno} = {q, ..., q,} and obtain

Z,00) = {pno|pe P} = P(0)\{qy, ..., 4} -
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For qe % (o) there is exactly one p € (R) satisfying pno = q; it satisfies pe P and

R, = o,.

We are going to establish the following commutative diagram with all mappings
being isomorphisms:

F(0) = £(0) X T (o) k. lek FP)xT
10=(’1X¢?z Ta'xv)
s s
I oj/oy= 11 o/0;x T1o5/0; = LLRS/RSx T o5 /o5,
qe (o) qe (o) i=1 peP i=1

For J e #(0), with Jo, = a,0, for q € (o), we set ¢(J) = (a,0; ),c»()- Then ¢ is an iso-
morphism by [23], Kap. 1, 12.6,and obviously ¢, (#(0)) = [[ o7/ whereg, = ¢| % (0).

qe P(o)

Clearly o:[] R)/R; — F(P), given by o((a,R}),cp) = [ p*“, is an iso-
peP peP
morphism. If we define ¢, : #(0) - #(P) by ¢, = g - g,, then ¢, is an isomorphism and

0:() = [ p™ = JR

peP
for J e # (o) with Jo, = a,0, for q € Z(0).

It remains to construct an isomorphism

v: [l o;/05, T
j=1
satisfying
y(aoy,...,a0;) = A(a)
for all ae o*. Then in particular ¢ (ao) = d(a) and ¢ induces an isomorphism
@*:Pic(o) - G
sending the ideal class [J] € Pic(o) of some J e (o) onto the class [¢ (/)] € G.

Remember that T= U/U* and U = n~'(o/f), where

n: 11 R, — 11 R, /piiR,, [T R/v > RIf.
i=1 i=1 i=

Let
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be defined by y,(b;, ..., b,) = (ay, ..., a,), where a,= b, if p,no=q;. We assert that

Im(y,) = U. Indeed, let (a,, ..., a,) € Im(y,) be given, a; = u; ' c;, where c;€0°, u;€0\p,
and (c;, ¥;) = (c,, u,) if p;n0 = p,No. From 4,0 4 (p; o) = o we infer

10+ (P'no) = o,

and therefore there exist y,e o such that 4y, = 1mod p{*; again, we may assume that
yi=y, if p;no=p,no. If p,no * p,No, then (p;no) + (p, o) = o, hence

®'no)+(p*no)=0,

and therefore the Chinese remainder theorem implies the existence of some a € o satisfy-
ing a = ¢; y; mod p{* for all 1 <i < r. Consequently we obtain

n(a,,...,a,)=n(c, ¥y .--,¢Y) =n(a,...,a)eo/f

and hence (a,, ..., a,) € U as asserted.

s
Now y,: [] o; , — U induces an injective monoid homomorphism
ji=1 .

v: ,U1 0;,/0% = U/(Un .]:[1 R)=U/U*=T,

given by y(byo,,,...,b,0,) = (ay,...,a,) U, where a; = b; if p;no = q; in particular,

we have p(ao, , ..., a0, ) = A(a) for all aeo". Since A(0*) = T by Proposition 1, y is an
isomorphism.

(iii) From (ii) and Proposition 2 it follows that |¢(J)| = (R: JR) for all Je€ (o)

and all J = ao with ae 0. If J € #(0) is arbitrary, then by Proposition 1 there is an I € % (o)
such that ¢ (J) ¢ (/) = d(a) for some a € o*, and hence we infer

loW@)| =10)|"113(@)] = (R: IR)"*(R:aR) = (R: JR) ;

the equality (0:J) = (R: JR) follows from Lemma 3. O

§ 4. Counting elements in arithmetical order formations

This paragraph contains our main result concerning analytic number theory in order
formations. We start with two preliminary lemmata. Then we prove a general counting
result (Proposition 5) which reduces the task of counting certain elements in an arith-
metical order formation [# (P), T, H, |-|] to that in the arithmetical formation

[(#(@P),#F(P)nH,|].
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Lemma 4. Let [T,|:|] be a small arithmetical monoid of rank r e N and ¢ > 0. Then
we have, for all y =2 and u 2 0,

ZT (u+ 1) < (u+y) *(ogy) .
te
Itl>y

Proof. Putting A(x) = # {teT||t| £ x}, we obtain for Iany z>y

Y (e —I(u+€) *dA()

teT
y<|t|sz

A(2) A(y) ; A©) dc.

Tt @y e
Observing 4(x) < (log x)", the assertion follows as z tends to infinity. 0O

Lemma S. Let T be a non-empty set, ye(0,1], deN,, and for 0 Sv=<=d+1 let
¢,: T — C be complex functions. Suppose that

d

C(t,x) = Z c,(H)x"+ cd+l(t)e—v/x_:;

v=0
is bounded for (t,x) € T (0,1]. Then the functions c, for 0 < v < d + 1 are bounded as well.

Proof. Let x,,...,x,,,€(0,1] be pairwise distinct numbers. For u € (0, 1], we set

1
— p~Y/u_
o) =e -

and
T o Y o (u)
f(u) = det 1 x  x X o (xy)
1 Xy XFey % Xi+1 ©(%g+1)
Then
f(d+1)(u) = (_1)d+1(p(d+1)(u) . V(xl, s xd+1) ’
where
1 x, - x4
V(xly---,xd+l)=det : . . . *0
1 xd+l e x:"‘l

denotes Vandermonde’s determinant. For every v =0, o™ () = u™" "'y, (1) e~ ?'*; there-
fore ¢“*1 and hence also f“*! has at most d + 1 zeroes. This means in particular that
f is not constant in (0, 1]; hence we can find some x, € (0, 1] for which f(x,) * 0.
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Let us suppose now that |C(z, x)| < C* for all (¢, x) e T x (0,1]. Then, for

0sj=sd+1,
we have

d
(*) Y o)X+ e (Dox) =6;(n)C*
v=0
with certain @;:T — C satisfying |©;(f)| < 1. Since f(x,) +0 we can determine c,(t)

from (x) by means of Cramer’s rule; finally Hadamard’s inequality shows that c,(¢) is
bounded. O

Proposition 5. Let [#(P), T, H,|-|] be an arithmetical order formation of rank r.
Let Ec % (P) X T be a subset, and for teT set

E,={ae #(P)|ateE}.

Let C:Tx(0,0) = [0, ) be a bounded function, ne€ R, and de N, such that, for any
teT and x = 3,

# {aeE,||a| £ x} = C(t,x) x(log x) " "(loglog x)* .
Then we obtain (again for x = 3)
# {ce E||c| £ x} = C*(x) x(log x) "(loglog x)?,

o= 5 (i) +o (M)

teT lng

where

In particular:

(i) Suppose that there is some teT and x,> 0 such that C(t,x)>1 for x = x,;
then we have C*(x) =<1 for all x 2 x,.

(ii) Suppose that for x = 3

_ d - loglog x
Cltx) = % ¢ (0)(oglogx)™+ 0( (logx)’>

with functions ¢,:T— R, 0<v =d, and ye R with 0 <y < 1; then we have

d N
- (loglog x)
* = * b4 e e
C*(x) v‘:"'o c*(loglogx)™"+ O ( Gz )’

c,(t
where c¥ = Y it ),
teT Itl

N=1fory<land N=r for y=1.
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Proof. For x =3 we have

teT |t|

—(Z + ¥ + ¥ + ¥ )#{aeE,||a|sTx}

teT t
Itlslogx logx<|t|sVx Vx<

#{ceE|lc|<x}=Y #{aeE,Ilaléf—}

4
=Y S;, say.

We treat the sums S; separately. If |#| < log x we have

-n
log ) = (logx)"(1+ 0 288X
2] log x
loglog = d—(lo logx){1+ 0 oglopx
glog 7 | = (loglog Togx

Si= 2 C( |t|>|z|“°g") "“°gl°gx)d( +0<10g10gx>)

teT lOg.X
|t slogx
—x(logx)‘"(loglogx)“( Y 1 <t —) +O(loglogx)>
et 1] |¢] log x
t|<logx

1 1 1 r
=x(1ogx)—n(1og10gx)a( ) mc( m) +0<%>)

because T is a small arithmetical monoid of rank r and therefore, by Lemma 4,

5 dc(,r)«tomimer
er |l 1] log x
|t] > logx

For logx < |t| £ [/; we have

n . d
(logm) (loglogl—):l) < (logx) "(loglog x)*

and hence

S, < Y C( |t|)| I(logx) "(loglog x)? < x(logx) ™"~ *(loglogx)**".
teT
logx <[t|SVx
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For x<|t|§§wehave
x\7" % \?
log — loglog— | <« 1
( gm) ( & gm)

1 x ,
S;<x Y mC(t,m)<<[/J_c(logx).

and thus

Finally we infer

Se<( Y D#{aeF(P)|lal <3} < (logx) .
teT
§<|t|§x

Hence

i S, = (Z |17|C(t|%> +O<M)>x(logx)”’(loglogx)“
j=1

teT lng
and the main formula is proved.
Since C(2,x) < 1 uniformly in ¢, we obtain C*(x) << 1, and (i) follows.

For the proof of (ii), let us write C(¢, x) in the form

d

_ - loglog x
C(t,x) = \Z'o ¢, (t)(loglogx) ™Y + ¢4, (1) og )

Lemma 5 implies that the functions c¢,, 0 <v <d + 1, are bounded. Inserting this ex-
pression into the main formula for C*(x) we obtain

C*x) =Y |17|< i ¢,(t)(loglog x) ™"+ ¢; , . (£) 1°gl°g"> 0<(10glogx)')

teT =0 (log x)? log x

= ‘2 C‘(logIng)‘”+0<l°g'°gx (loglogx)'>
v=0

(log x)” logx

as required. O

§5. FQctorization properties

We start with some preliminaries concerning factorizations in arbitrary monoids. Then
we consider arbitrary order formations, and finally we derive analytical results for arith-
metical order formations. A general reference for factorization properties in arbitrary
monoids is [14].



Geroldinger, et al., Non-unique factorizations 107

A monoid H is called atomic, if every ae H\ H”* possesses a factorization

a=u, ... u,,
where reN and u,, ..., u, € H are irreducible; we call r the length of that factorization,
and we denote by #(a) = N the set of all lengths of factorizations of a. For ae H*, we

set £(a) = {0}. An atomic monoid H is called a BF-monoid (bounded factorization
monoid) if £ (a) is finite for all ae H.

Let H be an atomic monoid. Two factorizations a =u; ... u,=v, ... v, of an
element ae H\H”™ are said to be not essentially different if r = s and there exists some
permutation ¢ € S, such that »; and v, are associated for 1 < i < r. Let f(a)e Nu {0}
be the number of essentially dlﬁerent factorizations of an element ae H\H*; forae H*,
set f(a) = 1. For ke N, we consider the following sets:

M, (H) = {ae H|max ¥(a) < k},
G(H) ={acH| % £(@) <k},
F(H) = {ac H|f(a) Sk} .
If n: H—> H/H™ is the canonical epimorphism of H onto the associated reduced monoid

H|/H*,thenae Hand n(a) e H/ H* have the same factorization properties. Therefore there
is no loss of generality if we assume H to be reduced.

We start with an algebraic description of the sets M, (H) and G, (H) if H belongs to
an order formation [% (P), T, H]. The following lemma gives a simple criterion for H to
be a BF-monoid and consequently atomic.

Lemma 6. (i) Let [# (P), T, H] be an order formation. If T is a BF-monoid, then H
is also a BF-monoid.

(ii) Let R be a Dedekind domain, H = R® a congruence nfonoid ando:H—- F(P)xT
its canonical divisor homomorphism. Then T and H are BF-nionoids.

Proof. (i) If T is a BF-monoid, then clearly # (P) x T is also a BF-monoid, and
the assertion follows from [14], Theorem 3.

(i) We use the notations 1ntroduced at the beginning of § 3. The rings R‘, are Dede-
kind domains; therefore all R; and H R;, are BF-monoids. Since Uc H R;, and

i=1
=Un ( H R‘) , it follows that U is a BF-monoid by [14], Theorem 3; hence

i=1

T=U/U” is a BF-monoid. Since [# (P), T,dH] is an order formation, dH is a BF-
monoid by (i), and from 0H ~ H/H* it follows that H is also a BF-monoid. O

Now let [# (P), T, H] be an order formation and G = # (P) x T/ H its class group.
We assume that H is atomic, G is finite and gn P + @ for all ge G (i.e., every class con-
tains a prime).
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For ke N, we set
M,(H,t)={ae F(P)|late M, (H)},
G,(H,t)={aeF (P)|ate G (H)},
F,(H,t)={ae F(P)|ateF,(H)},

and we shall give a combinatorial description of these sets. Let & (G) be the (multiplica-
tive) free abelian monoid with basis G, define 1: #(G) X T —» G by

g, - &Gl)=g+ " +8,+[1]
and consider the T-block monoid
B=2RG,T,1)={weF(G)xT|i(w) =0},

cf. [5]. By §2, Example 3, [# (G), T, #] is an order formation. We define the 7-block
homomorphism g: F(P) xT - F(G) X T by

Bpy- - o) =P - - [PaD 2}

then B(# (P)) = #(G), B~*(#) = H, & is atomic and B|H : H — A is length-preserving,
i.e., Z(B(a)) = L(a) for all ae H by [5], Prop.4. This implies

M, (H,t) = {ae F(P)|B(a) e M, (%, 1)},
Gy (H,t) = {ae # (P)|B(a) e G, (%, 1)},
and we have to consider the order formation [ % (G), T, #].
For an (additive) abelian group G and a non-empty subset Q — G we denote by
BQ) ={g, . 8 €F Qg+ +8=0cF(Q

the ordinary block monoid over Q; for S=g,-...-g,€ Z(Q), we call a(S) = n the size
of S. If G is finite we define the generalized Davenport constants D, (G) (for k£ € N), follow-

ing [12], by
D, (G) = max{s(B)| Be M, (#(G))} eN.

In particular, D, (G) = D(G) is Davenport’s constant. For recent results concerning D (G),
see [8].

Let [#(G), T, #] be an order formation with 7-block monoid
B=BGCG,T,1)cFG)XT;
then #(G) = #Nn F(G) = #. Suppose # G + 2; then #(G) o F(G) is a divisor theory

with class group #(G)/ %2 (G) ~ G and every class contains exactly one prime divisor (cf.
[10], Beispiel 6). Let
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A:FG) > F(G)ABG) 3G
denote the canonical epimorphism satisfying A(g) = g. Then, for every g € G,
27N (—8) ={Se#(G)|Sge B(G)},
and we set A" 1(—g) = 2,(G); in particular we have %,(G) = %2(G).

Proposition 6. Let G be a finite abelian group, T a reduced monoid, 1: #(G) x T - G

a monoid homomorphism satisfying 1(g) = g for all g€ G, and assume that the T-block
monoid B = B(G,T,1) = F(G) x T is atomic.

(i) M, (%, 1) =M,(2(G)) and max{a(S)|SeM,(%,1)} = D,(G).
(ii) If 1+ teT, then a(S) < D,(G) for all SeM,(%,1).
Proof. (i) is obvious by definition.
(ii) Let Se #(G) be such that ¢(S) = D, (G). By [12], Prop. 1, there exist
B,,...,B,e B(G)\{1}
and S, #(G) such that S=B, ... B, S,. If 1 £ te T and Ste %, then
St=B,-... - B,(S,1)
implies max Z(St) > k and hence S¢ M, (%,1). O

For the description of the sets G, (4%, t) we recall the notion of Z-systems from [13],
sec.4. Let G be a finite abelian group. By a system in G we mean a pair (Q, ¢), consisting
of a subset Q = G and a function ¢: G\Q — N,. If (Q,0) and (Q’,¢’) are systems in G,
(Q,0) = (Q',6') means Q = Q' and ¢' = ¢|G \Q". For a system (Q, 0), we set

Q(Q,0) = {Se F(G)|v,(S) = o(g) for all ge G\Q}
(v,(S) denotes the exponent of g in §), and

lol= Y o(®

geG\Q

(for Q = G, set ¢ = @ and |g| = 0). A subset Q = G is said to be half-factorial, if the block
monoid #(Q) is half-factorial i.e., # Z(B) = 1 for every B € #(Q). Half-factorial sets were
first studied by L. Skula, who called them c-sets (see [24]); for further properties we refer
to [7], §13 (there they are the sets with A(Q) = ), in particular remember that

u(G) = max {# Q| Q = G is half-factorial} .

8 Journal fir Mathematik. Band 459
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Proposition 7. Let assumptions be as in Proposition 6, k € N and suppose # G = 3.

(i) For every teT, we have

m(t)
Gk (g’ t) = U Q(Q}t)’ a_,'(')) r\‘@1(0 (G) E

j=1

where (QF,a("), ..., Q% 0%,) are mutually incomparable systems of G such that
Q(Q°, a") "B, (G) + 0. Moreover, this decomposition is unique, the sets Q{", ..., Q{1
are half-factorial, and every maximal half-factorial set is among Q", ..., Q).

(ii) For every teT and je{1,...,m(t)}, there exists some le{1,...,m(1)} and a
function ¢ : G\Q{" — N such that |¢| £ D(G) —1 and (), 0{") < (QP,0{" + ¢).

Proof. (i) Let teT be given; then clearly G, (%, t) = %,,,(G), and if
AeGy(%1), Be#,(G) and uv,(B) v, (4) forall gegG,

then Be G, (%, ). Therefore the set Z = G,(%4,t) < %#,,(G) is valuation dependent

and Z = Z* in the sense of [13], Def. 5. Therefore [13], Prop.9 implies existence and

uniqueness of a decomposition as asserted. Comparison with [7], Prop.9 shows that
M, ..., 0%, are half-factorial. If Q = G is a maximal half-factorial set, then

2(0,0) = G(%,1)
implies Q € {Q{", ..., Q4 }-
(ii) SupposethatzeT,je{1,...,m(t)} and Se Q(QY, o) N %, (G). By [12], Prop. 1

there is a decomposition S = BS’, where Be #(G), S'€ 8,,,(G) and ¢(S') £ D(G) —1.
From S e G, (%, t) we infer Be G,(4%4,1), and hence

m(1)
S=BSe | U 0P, 0V + 9) N B, (G) ;

1=1 ¢:6\Q{" > No
lel<D(G) -1

now the assertion follows from [13], Prop. 9. O

Now we are ready to state our quantitative results concerning M, and G,; they are
based on the following analytical result.

Proposition 8. Let [# (P), T, H,|'|] be an arithmetical order formation with class
group G=F(P)XT/H, Q<G, 6:G\Q >Ny, |6|>0if Q =0, and ge G such that
Q(Q,0) N #,(G) * 0. Then we have

#{ae F(P)|f(a) € R(Q,0) " %,(G),|a| < x} = C(x) x(logx) "(loglog x)*,

where

_ #(G\Q) d={lal, if 0+0,
"= "% ’ lo]—1, if Q=0

and C(x) =<1 as x = .
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Suppose moreover that H, is a congruence monoid in a holomorphy ring of some
algebraic number field, 0 : Hy - % (P) X T is the canonical divisor homomorphism associated
with H,, and H = 0 H,. Then we have

d loglog x
Cx)= log I -y
(x) vgo ¢,(loglogx)™" + 0( Togx)’ ) ;

where ¢, ...,c,€ R, ¢y >0 and

1, ifG={0} or Q=0 or Q=G,
y= 1 . 2 .
ﬁmm {1,1~cosﬁ} otherwise .

Proof. Since [ (P), HNZ (P),|-|] is an arithmetical formation, the first asser-
tion follows from [13], Proposition 10. The stronger result in the number field case is proved
exactly as [18], Lemma 2 (compare also [7], Prop.8 and note the misprints of y). O

Theorem 1. Let[# (P), T, H, | |] be an arithmetical order formation with class group
G, B : F (P) = % (G) the block homomorphism and k € N.

(1) There exist Sy, ..., S, € # (G) and subsets Ty, ..., T,, of T such that
M (H)= ) B7'(S) X T;,
i=1

and there exists some 1 < n < m such that
Ty=-=T,={1}, {S,....5]}={ScM(2(G)|s(S)=Dy(G)},
and 6 (S;) < Dy(G) forn+1=j<m.
(ii) For x — o0, we have
# {aeM(H)||a| £ x} < x(logx)™ ' (loglog x)*©@ 1.
Proof. (i) By Proposition 6,

U M@, 1) = {Sy, ..., Sp} = F(G),

teT

and there exists some 1 £ n < m such that
o(Sy) = =0(S,) =D(G), {Sy,....,S,}cM(%1)= M, (#(G)),

and ¢(S;) < D,(G) if S;€ M, (%, 1) for some ¢ + 1. Putting T; = {teT|S;e M, (%, 1)}, we
obtain

M, (®) = U {Sj} x Tj’

ji=1
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and consequently

M) = [ B748) T

j=
(i) For Se # (G), we define a5: G —» N, by g5(g) = v,(S); then we have |og| = 7 (S)
and Q(0, o5) = {S}. Now the result follows from (i), Proposition 8 and Proposition 5. O

Remarks. 1. Since M, (H) is the set of irreducible elements of H, Theorem 1 con-
tains a generalization of the prime number theorem.

2. There are similar results for the sets

M, (H) = {aeH|ke Z(a)},
M/ (H) = {ae H|min¥(a) < k},
see [7], Theorem 5.

3. If H arises from a congruence monoid in some holomorphy ring of an algebraic
number field or algebraic function field, we get essentially stronger asymptotic results. For
the number field case this follows from Proposition 8, for the function field case from [17].

Let us state Theorem 1, provided with a strong asymptotics, for orders in algebraic
number fields.

Theorem 1o. Let o be an order in an algebraic number field K, G = Pic(o0), r the
number of distinct prime ideals of oy dividing the conductor of o and k € N. Then we have,
for all x = 3,

log 1 N
# {avlae M, (0), (0:a0) < x} = & [V(loglogx) +0 <___( °glo<g’gxx) )]

where Ve R[X] is a polynomial of degree D,(G) — 1 with positive leading coefficient and
N=D,(G) if r=0and N = D, (G) +r — 1 otherwise.

Proof. 1If r =0, then o is a principal order and the assertion follows from Proposi-
tion 8. Suppose r = 1; by Proposition 4, o* is a congruence monoid of o,. Let

0:0° > F(P)xT

be the canonical divisor homomorphism; then [# (P), T, do°,|-|] is an arithmetical order
formation by Proposition 3, and for a € o* we have |da| = (o : ao) by Proposition 4. Since 0
induces an isomorphism 0* : 0*/0* = do°* the assertion follows as in Theorem 1, using the
stronger asymptotics given in Proposition 5 and in Proposition 8. O

Theorem 2. Let [F(P),T,H,|-|] be an arithmetical order formation with class
group G, B: F (P) - F (G) the block homomorphism and k € N.
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(1) Suppose # G 2 3; then there exist systems (2,,0,),..., (2 0,) of G, classes
g1s---,8m€G and subsets Ty, ..., T, of T such that

G (H) = U B—l[Q(Qj’aj)n'@gj(G)] XT;;
j=1

we have max{# Q;|1 < j < m} = u(G), and there is a constant ¢,(G) depending only on G
such that |o;| < ¢, (G) for all 1< j < m.

(i) For x — o0, we have
# {ae Gy (H)|la| £ x} <x(logx)™'*#9D'*S (loglog x)*
where ce Ny with ¢ < ¢,(G) if #G 23, and c=0 if #G<2.

Proof. (i) By Proposition 7, there exist systems (Q,,0,),...,(Q,,,0,,) of G and
classes g4, ..., g, € G such that

m

U Gk('@’ l) = U Q(Qj,dj)ﬁ.@gj((;),

teT ji=1

and there exists a constant ¢,(G) depending only on G such that |g;| < ¢, (G) for all
1 £ j £ m. Moreover, for each 1 £ j < m, there is some ¢ € T such that

Q(QJ’ Gj) m@g_,(G) < Gk('@a t) ’
and the maximal half-factorial sets of G are amongst Q,, ..., 0,,, whence

max{# Q;|1 <j < m} = u(G).
Putting
T, = (1€ T|Q(Q;.0) " 4,,(G) < G,(#,1)},
we obtain

6@ = ) [2(0),0),G)N T,

and consequently
G(H) = | B! [2(Q;,0)n%,,(G] X T;.
i=1

(i) First suppose # G < 2. In this case, G is half-factorial, and therefore we have
for every t € T either G, (%, 1) = 0 or G, (%, t) = B,,(G); this implies

#{aeGy(H)|lal < x} =x

though in general G, (H) + H.
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Now let # G = 3; then the assertion follows from (i), Proposition 8 and Proposi-
tion S if we observe that for 1 < j, u < m the intersection

[Q(Qj,0) " %,,(G)]1N[Q(Q,,0,) N %,,(G)]
is either empty or of the form Q(Q;n Q,,0) N %, (G) where
c|G\Qj=o0; and ¢|G\Q,=o0,.
Remarks. 1. Thereis a similar result for the sets G, (H) = G, (H)\G,_,(H) (k = 2).

2. Again, we obtain essentially stronger asymptotic results if we are in the number
field or in the function field case.

Let us state Theorem 2, provided with a strong asymptotics, for orders in algebraic
number fields.

Theorem 20. Let o be an order in an algebraic number field K, G = Pic(o), r the
number of distinct prime ideals dividing the conductor of o and k € N. Then we have, for all
x=3,

# {aolae G,(0), (0:ap) < x} = x(logx) ™' FHO/*E [V(loglogx) +0 (%g:;)gc———)i)] ,

where V € R[X] is a polynomial with positive leading coefficient.
If %G <2, then deg(V) =0, N =max{1,r} and y =1.
If %G = 3, then deg(V) < ¢,(G), N=deg(V) +1 and
y=min{l,1 —cos(2n/#G)}/#G.

Proof. Combine the proofs of Theorem 10 and Theorem 2 and observe that in the
case # G < 2 the set G is half-factorial. O

In order to describe the sets F, (H, 7), we recall from [15] the notion of reduced types.
For an abelian group G =+ {0}, we set G’ = G \{0}; we write the elements ve # (G’ X N)
in the form

V= H (g’ n)v"n
(g,m)eG'xN
where v, , € Ny, v, , = 0 for almost all (g,n) € G’ x N, and we call
o) = #{(g,meG xNly,, =1}
the depth of v.

Now let again [# (P), T, H] be an order formation with class group G; we assume
that H is atomic, {0} * G is finite and # (g P) = oo for all g€ G; then F(P)n H o # (P)
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is a divisor theory with class group G by Lemma 1. We write the elements a € & (P) in
the form

j‘8
a=[1 [I px,

geG n=1

where A, € Ny, py 1, ..., Py, € PNg are distinct, v, ,eN and 1 < v, Sy, , £ - £ Vi dgs
we call

Ag
w@=T] TI (& eF @G xN)

geG’' n=1

the reduced type of a and & (a) = §(t,(a)) the depth of a. For k € N, Narkiewicz’ constant
a,(G) is defined by

a,(G) = max {6(a)|aeF,(Hn Z (P))} .
For G = {0} we set a,(G) = 0. It follows from [15], Satz 6 and Satz 9, that in fact a,(G)
depends only on G and coincides with the constant of the same name introduced by W.
Narkiewicz in [21] (note that Hn % (P) ¢» & (P) is a divisor theory with class group G,

every class contains infinitely many primes and therefore every normalized reduced type is
of the form z,(a)).

Proposition 9. Let [# (P), T, H] be an order formation, where H is atomic,
{0} +G=F(P)XT/H
is finite and # (g P) = o for all ge G.
(1) IfteT, aeF,(H,t), be F(P) and ty(a) = 14(b), then beF,(H, t):
(ii) For every teT and a€F,(H,t) we have 6(a) < a,(G).

Proof. (i) Let teT and a € # (P) be given,
'18
a=T[ [ pys~
geG n=1

where 1,e Ny, p, ;€ Png are distinct and 1 < v, ; < --- £, , . Then we have ate H if
and only if

Ag
Y, L Pagdld=0;

geG' n=1

since pg 1, ..., Do, are prime elements, the factorizations of ar in H correspond bijec-
tively to pairs of decompositions

r
— (J) = . s
(vy-" - Z va{n>geG' s I=1t,

i=1
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where v\, 2 0 and 7€ T are such that

Ag

Z Z V§{3.8+[tj] =0.

geG’' n=1

Therefore the property of belonging to F, (H, t) does not depend on the element a € # (P)
but only on its reduced type t,(a).

(ii) Suppose that ae # (P) satisfies d(a) > a,(G) and ate H for some teT. By
assumption, there is some p € P [¢] such that p ¥ a; then ¢ = ape H, and

5(c) 2 5(a) > 2,(G).
This implies f(c) > k, and substituting ¢ for p, we obtain f(az) = f(c) > k, whence
a¢F . (H,t). O

Theorem 3. Let [#(P),T,H,|-|] be an arithmetical order formation with class
group G and k € N. Then we have, for x - o,

#{aeF, (H)||a| £ x} <x(logx)~ '**S(loglog x)*<(® .

Proof. If G = {0}, then we have for every t € T either F,(H,7) =0 or F,(H,t) = H
and in particular F,(H,1) = F,(H) for all k£ = 1. Thus in this case the assertion follows.

From now on, suppose that G # {0}; for e T, set

() = {ro(@|aeF,(H, 10}
and

o(t) =max{o(v)|veIT(r)}.
Proposition 9 implies

a,(G) =max{o6(¢)|te T},
and from [13], Theorem 1 we obtain, for every 0 </ < a,(G) and t € T such that 6(¢) = [,

(*) #{aeF,(H,1)||a|l £ x} = # {ae F(P)|1,(a) e X(2), |a| £ x}
= C(t,x) x(log x)~1*Y*G(loglog x),

where C(¢,x) =<1 as x - o0. Also from [13], Theorem 1 we obtain

#{ae F(P)|6(a) =1]a| £ x} = C/(x)x(logx)~'*/*%(loglog x)'
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where C;(x) =1 as x — oo, and since obviously C(z,x) < C,(x) for all e T satisfying
o(t) = I, we see that C is bounded. Thus Proposition 5 applies and yields

teT

#{aeF (H)|la|=x} =) {aeF,‘(H,z)||a|§ ﬁ}

C(X) X(log x)— 1+ l/#G(log log x)llk(G) ,

where C(x) <1 as x > 00. O

Theorem 30. Let o be an order in an algebraic number field K, G = Pic(0), r the

number of distinct prime ideals dividing the conductor of o and k € N. Then we have, for all
x=3,

N
# {ao|ae F,(0),(0:ap0) < x} = x(logx) "1 T1/*6 [V(loglogx) +0 <%gxi>] :

where Ne N and VeR[X] is a polynomial with positive leading coefficient of degree
2,(G). '

Proof. Incase G = {0} as well as in case G # {0} the function C(z, x) in formula (x)
(proof of Theorem 3) has the form given in Proposition 5 (ii) (cf. [13], section 5), which
implies the assertion. O
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