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Boundary problems of the second order
with an indefinite weight-function*)

By W. Allegretto at Edmonton and A. B. Mingarelli at Ottawa

1. Introduction
The boundary problems under consideration here are of the form:
(1.1 Au=JAwu
where: Q is a bounded domain in R"; u e W"Z(Q); either A= —A + ¢, with A the usual

dx
indefinite function in @, while 4 has some negative spectrum. For technical simplicity of
presentation, we assume unless otherwise stated g, w € L*(£2) and that there exists a ball
Bc Q such that u(Bn {x|w(x)=0})=0. The latter condition implies, as shown below,
that the identities Av=wv=0 in Q imply v=0, so that the operators 4 and w do not
have a common nontrivial vector in their kernel. We remark that many of our proofs
hold without change not only if these regularity assumptions on the coefficients are
weakened but also in the more general case: Au= ABu with A, B operators acting in a
Hilbert space. To be definite, however we shall assume the explicitly given conditions
unless otherwise stated.

d d
Laplacean, or A= ——(p(x) E) +q(x) for n=1. In (1. 1) we assume that w is a sign

Since both the operator 4 and the operator generated by the function w have
both positive and negative spectrum, problem (1. 1) is called indefinite (or non definite).
For a survey of boundary problems of this type we refer the reader to [14] from which
much of the terminology used in this paper derives.

In Section 2, after some preliminary definition, terminology and recall of earlier
results, we rewrite problem (1. 1) as a two parameter problem, viz:

(1.2) Liu=Awu+ku

in the parameters (4, k) where L, = L+ k,, k, being chosen so that L; >0. Observe that
the real eigenvalues of (1. 1) correspond to the eigenpairs (4, ko) of (1. 2). For fixed 4 we
analyze the definite problem (1.2) and thus obtain a family of eigencurves (4, k;(4)),
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2 Allegretto and Mingarelli, Indefinite boundary problems

where k;(4) is the j* eigenvalue of (1. 2) as given by the Courant min.-max. theorem. We
conclude, in particular, that the real spectrum of (1. 1) consists of a countable collection
of eigenvalues having only + oo as accumulation points. It is then shown that all
sufficiently large real eigenvalues A; of (1.1) have eigenfunctions u; for which sign
{A;(wu;, u;)} >0. This extends a corresponding one dimensional result [17] to the
multidimensional setting. It follows that we may always assume that (1. 1) does not have
eigenvalue zero (by a shift in 1), a common hypothesis which simplifies many of the
proofs, see e.g. [7]. After the introduction of a suitable labeling of the (i, j)th eigenpair
(4, k) of (1. 2), we show that A lies between two (possibly different) max.-min. expressions
of the Courant types. We show that in some cases there is a classical max.-min. theorem
for these, provided A is sufficiently large, while we also observe that no max.-min.
theorem may hold if 4 is sufficiently near zero. This represents an extension to the
indefinite case of the classical max.-min. theorem for problems where some form of
positivity was assumed (see, e.g. [13], [20], [25]). Finally, in this section, we present
sufficient conditions for the existence of exactly one complex pair (4, 1) of eigenvalues of
(1. 1) in the case, for example, that w(x, y)=—w(—x,y) and g=—ke R with Q k
suitably chosen in a range independent of w (compare with [2]). We believe these to be
the first explicit sufficiency criteria for a class of partial differential equations.

While in Section 2 we discuss uniformly elliptic operators so that the only
singularity comes from the lack of definiteness, in Section 3 we extend several of the
results of Section 2 to the case of more general elliptic operators for n=1. Specifically,
we first find sharp bounds for the Haupt and Richardson indices (defined below) in the
case:

1.3 —(py') +qy=4iwy,

(1.4 y(@=y(b)=0

. ) 1
where, in particular, p =0, ; € L'(a, b).

An estimation of a related, but not equivalent, quantity is treated in [2]. We next
discuss the possible existence of simple non-real eigenvalues for (1. 3)— (1. 4). At the end
of this section we show that the estimation of the real part of a simple non real
eigenvalue may be realized provided one can estimate various quadratic forms, in itself
a nontrivial undertaking. If p(x) > é > 0 for some constant é and p, g, w are regular then
many of the results in Section 3 have much simpler proofs, based on the arguments in
Section 2, which we usually indicate.

Finally in Section 4, we abandon elliptically altogether and briefly discuss the
highly pathological mixed problem for the n=1 case where p(x), in (1. 3), is allowed to
change its sign in Q=(a, b) and 1/p € L'(a, b). We exploit the features of an example,
first presented in [3], where every A e C is an eigenvalue of (1.2)—(1.3) to show that
many of the results herein and parts of the general theory may not be improved upon
by relaxing the sign condition on p(x). This example generates an alternate example of
a symmetric linear operator in a Krein space (see [4]) whose spectrum is all of C.
Apparently the only other such example known is due to H. Langer [4], Chapter 5. The
main difference between our example and that of Langer’s is that C consists only of
continuous spectrum in the latter whereas in our case C consists only of eigenvalues.
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After a brief excursion into Sturm theory we present an eigenvalue existence and
asymptotics result for the Neumann problem associated with (1. 3) where g(x)=0 and
w(x)>0. We also give a “positivity result” related to the eigenfunctions of the smallest
positive and largest negative eigenvalues.

2. Uniformly elliptic problems

As stated in the Introduction, we consider in a bounded domain Q< [R" the
elliptic expression:

2.1 lu=—Au+qu=Awu

with ue Wb2(Q), gq,w real and in L®(Q). We assume [, w indefinite: there exist
o, n, p e CY(RQ) such that (we, @) <0, (wy, ) >0, B(n, ) <0 where B denotes the form
associated with [ and (,) represents the L?(€2) inner product. We also assume that for
some sphere B; = Q, u({x|w(x)=0} n B;)=0.

Since | — ¢w is bounded below for any fixed constant £, we let L—¢w denote the
associated Friedrich’s operator. It is our purpose to discuss the spectrum of:

2.2 Lu=Awu.

An eigenvector of (2.2) is called a ghost state iff (wu, u)=0. We observe that any
nonreal eigenvalue of (2.2) has only eigenvectors which are ghost states (by the
symmetry of I, w).

For any subset S of WI'Z(Q) we let |S| denote the largest number of linearly
independent vectors in S, while # S* (resp. # S7) denotes the largest number of vectors
in S such that (wu;, u;)=4;; (resp. —J;;). We observe that #S* = <|S|, with strict
inequality possible due to the presence of ghost states. In the sequel, where the situation
is clear from the context, we merely write 4 S for #S* or #S™.

Finally, if S is any set of scalars, we let |S| denote the number of points of S.

It is useful to also recall the following definitions and results. Let T: L* — L? be a
compact operator with eigenvalue A. The root subspace S associated with A is the space
{v|(T—A)*v=0 for some s}. The members of S are termed root vectors for 4 while
dim (S) is the algebraic multiplicity of A. We recall also the following continuity result
(see [11], p.212): Let B C be a given domain bounded by a smooth curve, and
assume that the spectrum of T in B consists of a finite number of isolated eigenvalues of
total algebraic multiplicity m. Then in the operator norm there exists a ball B,(T)
centered at T, with radius ¢ =¢(T), such that if T, € B,(T) then the spectrum of T, in B
also consists of isolated eigenvalues of total algebraic multiplicity m. In the applications
to follow, Tu= L™ !(wu), and observe that induction shows:

s+ 1 s 1 i
(T—%) v=0 iff (L—lw)v=w(z u,.> where (T—I)ui=0
i=1

for i=1,...,s.
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We begin by stating:

Theorem 2.0. (a) Equation (2. 2) admits two (resp. one) positive eigenfunction(s) iff
L—&¢w>(resp. =) 0 for some real &,
(b) If (2. 2) admits a positive eigenfunction u with eigenvalue A then:
(i) A is simple (i.e. dim (eigenspace) = 1);
(ii) there are no ghost states except, possibly, u itself;
(iii) if p is any other eigenvalue with eigenvector v then (u— 1) (wv, v) > 0.

() Let S={u|A(wu, u)<0, u eigenfunction of (2. 2) with eigenvalue A}. Then |S| is
finite.

(d) For any fixed A, let S={u|Lu=Awu}. Then |S| is finite.
() L,w do not have nontrivial common null space.

(f) If L™! exists and p, A+0 then root vectors u, v corresponding to eigenvalues
A, p (A = ) satisfy (wu, v)=0.
(g) Eigenvectors corresponding to different eigenvalues of (2.2) are linearly

independent.

Proof. Parts (a), (b) are explicitly shown in [1]. Part (c) is proved in [15] or [5].
Part (d) is an immediate consequence of the Sobolev Embedding Theorems. To see part
(e) assume Lv=wv=0. Then v=0 in a sphere B, = Q2 by our assumption on w. Since
|Av| < K(Jv]) for some constant K (depending on the coefficients) we find v=0 by the
Unique Continuation Theorem given in [21], p. 240. Next, for part (f) we follow the

1Y 1y

procedure of [10], p. 130 (see also [5]). Specifically, assume (T_I) u =<T——#—> v=0.
If r=s=1, u, v are eigenvectors and the result is immediate. Suppose the result is true

1 1
for any indices with sum <r+s. Set: u’ =<T———)u, v’=<T——>v. We conclude
’ ’ . }. y,
(wu, v')=(wu’, v) =0 by assumption, whence:

0=A(wu', v)=A(wL ' (wu), v) — (wu, v)

= A(u, wL™ 1 (wv)) — (wu, v)

— & L awa, o)+ (0, 0] — (wis, ) = [i - 1] (Wi, 0)
n u

and the result follows. Finally, for part (g), assume (L—4;w)u;=0, for i=1,..., j. Since
J J

all u; are eigenvectors, if )  c;u;=0 then ) wi;c;u;=0 and we conclude
i=1 i=1

j—1
Z W(A‘ —lj)ct u" =O in Bl CQ,

i=1

where B, is a sphere in Q in which w0 a.e. We note, by induction, that u; =0 in B,.
Unique Continuation then shows 4, =0 in Q and, by induction, ;=0 fori=2, ..., j.
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We remark that, in general, eigenvectors corresponding to different eigenvalues
need not be independent. Indeed, if Lv=wv=0 then Lv— Awv=0 for any A but this is
not possible here. We also note that results for the cases A=0 or L not invertible,
explicitly excluded in some of the proof of Theorem 2. 0, may be always obtained by a
shift in A, or L as shown in arguments introduced below.

We note in passing that the space 4 spanned by the eigenvectors corresponding to
the nonpositive spectrum of L may be used to estimate |S| in part (c) as was done in
[15]. We take this opportunity to modify slightly some estimates in [15]. For every
complex 4 (with Im A > 0), let n(4) denote the dimension of its eigenspace. If 4 is real and
(wu, u) =0 for any of its eigenvectors u, then we let n(4) again denote the dimension of
the eigenspace of A if A(wu, u) <0, while we set n(1)=0 otherwise. Finally, if A is real
and (wu, u) =0 for some eigenvector u, then n(4) will denote the maximal dimension of
spaces spanned by linearly independent eigenvectors {g;} such that:

Awgi, 8) =0, (wg;, g)=0, (i+)).

The classical Spectral Theorem shows that the sum of n(4) over {4|ImA=0} does not
exceed dim(A). The estimates given in [15] are to be modified accordingly, but note
that if the eigenspaces are one dimensional then no modification is required. For an
alternate explicit estimate illustrating this connection, see also [5], or [12]. We shall not
need such an estimate in the sequel, except in obvious special cases.

Theorem 2. 0 indicates that positive eigenfunctions cannot be used to investigate
the spectrum of truly indefinite problems. Indeed, such problems may be characterized
by the absence of (positive) ground states. This is in sharp contrast to the definite cases

(see e.g. [13], [21], [9]) where there are eigenvalue(s) with positive eigenvector(s) at the
onset of the spectrum.

Select a constant k, >0 such that L, =L+ ko> 0. It will be useful to consider in
the sequel the problem:

(2.3) Liu=Awu+ku

with eigenpair (4, k). For fixed A € R we let k; = k;(4) denote the j*™ eigenvalue of (2. 3) as
given by the Courant min.-max. principle. Observe that in particular, the real
eigenvalues of the original problem (2. 2) correspond to the set:

U k5 (ko):

We first show that if u{x|w(x)=0}=0 then the set of A’s associated with ghost
states must be bounded uniformly for bounded k.

Theorem 2. 1.  Assume p{x|w(x)=0}=0. If (4, k) is associated with an eigenvector
u such that A(wu, u)<0 and L,u=Awu+ku with |k|<p then there exists a constant
y=79(B)> 0 such that |[A| <7y.

Proof. It will suffice to show, by compactness, that if L,u,—k,u,=4,wu, with
k,— k and A,(wu,, u,) <0 then, for some constant y, |4,| <y. To see this, set (u,, u,)=1.

13 Journal fir Mathematik. Band 398
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It follows that:

“un ”%, 2 § C(Ll Uy, un) é Q

for some constant Q, where || ||, , denotes the W2 norm. We conclude that u, has a
convergent subsequence (also denoted by u,) to some u in L?. Let ¢; denote an
eigenfunction of the (regular) positive operator L,, with eigenvalue u;. We conclude

Ilj(u, Q)= (u, (L,) ‘Pj) = "li_’rr; (L —k,) u,, ¢j) + Kk, (u,, 0;)]

- nh—»n:o [)“n (w Uy, (Pj) + k'l(u"’ (,0]')] .

If |4, — oo it follows that (wu,, ¢;) — 0 with n, i.e. (wu, ¢;)=0. But {¢;} is complete in
I? and, consequently, wu=0. By our assumption on w this implies u=0, which
contradicts (u, u) =1, and the result follows.

We next recall the following results. A brief indication of the proof is given for the
reader’s convenience.

Theorem 2.2. Let y=k;(4) denote the real eigencurves of (2.3) as given by the
Courant min.-max. principle.

(@) k;(4) is Lipschitz continuous (indeed |k;(4) — k;(p)] < |4 — p| [|wl|L<);
(b) k;j(A) = + o as j— oo, uniformly for i in compact sets;,

() y=k,(A) is concave;

(d) kj(4) — —o0 as |A| — o0;

(e) Problem (2. 2) has infinitely many eigenvalues {Af}, Af — + oo.

Proof. Part (a) is immediate from the Courant min.-max. theorem, while (b) is a
direct consequence of the compactness of (L, —Aw+1)”! for 7 large and comparison
with (L, —[sup |4|] [|w|.=) with K compact. Part (c) follows from (d) and either known

AekK

results (see, e.g., [23]) or it may be shown directly from the proof of Theorem 2. 0(b).
Next, for part (d), consider Mu=wu. This is a self-adjoint map, [*(Q) — L?(Q), with
both positive and negative essential spectrum ¢(T). Let o € ¢(T)n R*. By the spectral
theorem there exist {u;} orthonormalized in L? such that |wu;—au| — 0. Let
{0} =CT(Q), lo;—u;ll <1/i. We observe: (¢;, ¢;) = d;, (Wo,, ¢;) = ad;; as i, j— .
Now let p be given and choose k>0 sufficiently large so that A>a/2I and B=1/21
where A (resp. B) is the pxp symmetric matrix with entries: (W@;.y, @;44) (resp.
(@i41> @j+1) for i, j=1,..., p. Let {¢,}7-! be given in L? and S the space generated by
P p

them. Choose {c;}? such that ) ¢?=1and v=Y c; ¢;,, € S*. It follows that:
1 1
(Lyv—Awn, v)<[q, —4q,] (v, v)
with constants q,, g, >0 independent of A and the specific {;, whence k,(4) — — oo as

A — o0. The case A — — o0 is identical with f € &(T) N R~ replacing «. Finally, for part
(e), let P>0 be given. Select I, such that if i> I, then k;(1) >k, for |A| <P, whence
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{AlA> P} N ki (ko) # @ by parts (a)—(d). This shows the existence of {4;"}. The existence
of {A;} is 1dent1ca1

We observe the following consequences.

Corollary 2.3. Let k, € R be given and assume 0< A, € k7 '(k,) for some i. Then:
(@) for all j>i there exists A;€ k; '(ko) such that A;2A,; (b) there exists an integer
Jo=Jo(ko) such that if j=J, then (wu;, u;)>0 for any eigenfunction of (2.3) correspon-
ding to (A, ko). Analogous results for A,<O0. If p{x|w(x)=0}=0 and |ko|<p then
Jo=Jo(B).

Proof. Since k;j(A)=k;(4) for all i, the existence of A; is immediate from
Theorem 2. 2. Next, note that if u; satisfies L, u;—kou;=4;wu;, Theorem 2.0 (c), (g)
give a contradiction if A;(wu;, 4;) <0 for infinitely many indices j. The uniformity of J,
in B is a consequence of Theorem 2. 1.

Corollary 2. 4. For any o € R there exists an integer Jo=J,(®) such that if j=J,
then ki ' (o) = {A;, A,} with 4, <0 <Z,. If p{x|w(x)=0}=0 and |a| <p then Jo=J,(p).

Proof. By Theorem 2.2(b),(d), there exists J; such that if j=J; then
{A1, A2} ck;'(@) with A, <0<A,. We show that for J,=J;, sufficiently large,
ki'(®)={A;, 4,}. Assume to the contrary, that there exist 1,, 45 € (0, ©0) N k; ! () with
0<A4,<A;. Since the other possible case: 4;, A3 € (— 0, 0) N k; ! (a) is identical, we do
not consider it explicitly. By the continuity of k;, we may assume that either there exists
a sequence 4, — A3 such that k;(4,) <k;(4;) =k;(43) =a, or that there exists a sequence
A, — A3 such that k;(4,) = k;(1,)=k;(A;)=a. Again we treat only the first possibility,
since the same arguments may be used in the second case. Let {u,} be a normalized
(in L?) sequence of eigenfunctions:

Ly u, — A, wu, = k;j(4,)u,.

Clearly {u,} is bounded in Wt 2(Q) and, without loss of generality, limu, — v weakly
in W1 2(Q) and strongly in L2(®). Note that v satisfies:
Liv—2A3wo=k;j(A3)v=0av.
Hence:
(tn, (2 + A3 W)v) = (L1 thy, V)
= ((k;(Aa) + A, W) 4y, 1)

or:
(An - 13) (wu,,, U) = [a - k](ln)] (uus U).

We conclude (wv, v)=lim [(wu,, v)]<0. Hence A;(wv,v)<0 and this contradicts

Corollary 2. 3 if it occurs for infinitely many j.

Observe that the arguments of Corollary 2. 4 and Theorem 2. 0(c) also show that
for any a, j, the set k; ! («) is finite.
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Corollary 2. 5. For any real k there exists a countable set Z such that L, —k —tw
does not have ordinary eigenvalue zero for any complex t ¢ Z.

Proof. Let Z=/\) ki '(k). By the remark after Corollary 2.4, Z is countable. We

adjoin to Z — if need be — a finite number of purely complex eigenvalues and
conclude that for 7 ¢ Z the equation L, u—ku—twu =0 implies u=0.

We shall apply this result in the future by assuming, without loss of generality,
that (L, — k) ™! exists.

We now proceed to estimate the eigenvalues of (2. 2). For this it is convenient to
introduce the following notation: Let (4, k) be an eigenpair for (2. 3). We decompose the
eigenspace associated with the pair into the following sets, the last three of which are in
particular the positive, neutral, negative parts (see [4], Chapter 1):

So={216, 0)=1},
S, ={v|(wv, v)>0},

S, ={v|(wv, v) =0, v nontrivial},
S;={v|(wv, v)<0}.

Observe that if S; +0 and S;+0 then S,+0: see e.g. [4], Chapter 1. Let n,=|S;|
for i=0,2, n,=#S, ny=#S53. We also observe the following relationships between
the n;. A short proof is given for convenience.

Lemma 2. 6. n; is finite for i=0,..., 3. Assume S, =0 then either S; =9 or S;=0.
Furthermore, in this case, if S; (resp. S3)+ 0 then n, (resp. n3)=n,.

Proof. That n,, n, are finite is an immediate consequence of the Sobolev compact
embedding theorems. We show n,, n; are finite by showing n, <n, and ny <n,. Indeed
let {u;}f be given, (wy;, u;)=0;;. We orthonormalize {;} in L? and thus create an
orthonormal set {v;}?, whence n, <n,. The proof that ny<n, is identical. Finally,
assume S, =0, and without loss of generality that S, +0, so that S;=0. Given {v;}T
eigenvectors such that (v;, v;)=4;; we now orthonormalize with respect to (w-,-) to
obtain the set {u;}T such that (wu;, u;)=0 if i+ j. Since S,=S;=0 we conclude
{u;} =S, i.e. (wy;, u;)>0, whence ny <n,.

If S,=0 we thus define the multiplicity of (4, k) to be n,. If S,+@ then the
multiplicity of (4, k) is given by the four vector (ng, ny, n,, n3). Observe that in such a
case there are n, linearly independent ghost states associated with (4, k). The same
terminology will, in particular, be used for complex 4.

Again motivated by [4], we term (4, k) a positive (resp. negative) eigenpair iff
S,=8;=0 (resp. S, =S, =0). An associated eigenvector u will be termed positive (resp.
negative). Note that this definition does not imply any actual sign conditions on (4, k) or
the function u. ’
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Fix k and let (4, k) be a positive eigenpair of multiplicity m. We order the
eigenvectors associated with (4, k) by the procedure of Lemma 2. 6. Specifically, we
specify and fix {vy,..., v,}, orthonormal in L2, by the Courant min.-max. theorem. We
then construct {uy,...,u,} by the Gram-Schmidt procedure of the Lemma. Assume that,
for a fixed k, the positive eigenpairs (u, k) with u <A have been designated as the first j'
pairs. Then A is termed the i+j™ positive eigenvalue and is denoted by 4,,; iff it is
associated with u;. An identical procedure is followed for negative eigenpairs, while the
precise ordering of multiple (real or complex) eigenvalues with associated ghost states is
left to convenience. Observe that A; is well defined since by Corollary 2.3, (4, k) is
negative (resp. positive) — for fixed k — if 1 << (resp. > )0. We thus construct for each k
two sequences {ui"}¥ of positive (resp. negative) eigenvectors with associated eigenvalues
Af — too as i— oo, and such that (wuf,uf)=+5,;. These sequences constitute
possibly different sets from those given in Theorem 2. 2(e). Finally, observe that in
determining that A is the i™ positive eigenvalue, we do not count the negative
eigenvalues nor those associated with ghost states.

Henceforth, (4, k) will be termed the (i, j)™* positive eigenpair iff (4, k) =(4;, k;(4;)
where /; is the i™ positive eigenvalue of (2. 3). In view of the symmetry present in the
results, we shall explicitly consider only positive eigenpairs.

We have the following estimate relating i and j:

Corollary 2. 7. For any k there exists a constant e=e(k) such that if (A, k) is the
positive (i, j)™ eigenpair then |i —j| < e(k).

Proof. Let k be given and note that there exists J, € R such that: for some i, and
Ai, € k31 (k) 0 (0, 00), (4;,, k) is the (ig, Jo)™ positive eigenpair, and by Corollary 2. 3 and
Lemma 2. 6, for m>0, 4, + m € kj% m(k) N (0, 00) implies (A;, 4 m, k) is the (io +m, Jo +m)™"
positive eigenpair. Hence, the (i, j))'* eigenpair — with i, j large — satisfies
li—jl=I(io + m)—(Jo +m)| =li,— Jo| =e, and the bound follows since there is at most a
finite number of i, j which do not satisfy this estimate. This completes the proof.

Fix k and let G denote any linear space generated by a linearly independent set of
root vectors {g;}/~, such that (wg;, g;)=((L; —k)g;, g;)=0 for all i, j. Note that any
such G is finite dimensional, and we let M denote the set of possible G. If no such
vectors exist, we set G = {0}, and note |G| is then 0. Observe that the set of all non real
root vectors may not be a member of M. For example if {y, i} are a nonreal pair of
eigenvalues of (2.2) with eigenvectors u, # then sp{u, i} e M iff (wu, #)=0. We also
observe that if geGeM and h is a positive eigenvector, then (wg, h)=0 by
Theorem 2. O(f).

We now state our first estimate.

Theorem 2.8. Let (4, k) be the (i, j)'™ positive eigenpair. Then:

: ((Ll_k)“’ u)
| e [ G <

VinG={0} (wu,u)>0

< inf sup inf M]}

GeM s ueSt (wu, u)
SLnG=(0} (wu,u)>0

@. 4)
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where: S,V are subspaces in L? with dim(S)=j—1, dimV=i—1+4|G|; S% V! are
understood inothe I? sense; the members of each subspace or set are allowed to be
complex; ue Wt 2(Q).

Proof. Observe that there exist j—1 eigenvectors of (2.3) such that
Liv,—Awy,=k,v, for a=1,..., j—1 with k,<k. Let v be the eigenfunction associated
with (4, k) and note (wv, v)>0 as (4, k) is positive. Set S={v,}{”*. Then ve §* and
(Lyv—kv, v)=A(wv, v) while if t € $* and (wt, 7)> 0 then (L, T —Awrt, 1) 2 k(1, 7) implies

1= inf dntkno
rest w1, 1)
L (wt,1)>0

Next, for any Ge M we show S*nG={0}. Suppose t=) c,g,€5 NG with {g,}
linearly independent root vectors spanning G. Note (wg,, gz)=0 for all «, f and
(Ly—k) Q. ca84) Y. ca8s)=0 by definition of G or, equivalently,

((Ll —lw) (Z Caga)’ (Z Caga))= k(z Ca8as Z Ca ga)'

By the Spectral Theorem, since te S*, we conclude t=) c,g, is an eigenvector of
L, —Aw with eigenvalue k: L,t—Awt=kt. That is: t=cu for some constant ¢ and
eigenvector u associated with k. But then ) c,g,—cu=0, whence ¢=0 since root
vectors corresponding to eigenvalues which are not complex conjugate are (w-,-)
orthogonal, and (4,k) is a positive eigenpair. Whence t=0 and S'nG={0}. To
establish the other inequality: choose any G € M, set d=i+ |G| and select any V with

d
dimV=d—1, V*nG={0}. Let v=) c,n, with {n,} either root vectors associated with

ghost states in G or positive eigeixfunctions with eigenvalue pair (y, k), (u<A). We
observe that {n,} is never empty since the eigenvector of (4, k) is a member. Choose {c,}
such that v e V*. Since V'~ G={0} we observe that expressing v as v=g+h — with
ge G and h a linear combination of positive eigenvectors — yields: h=0 implies
v=geV*nG and hence v=0,¢,=0 for a=1,...,d. We conclude h+0. We observe
that (wg, g)=0 by definition of G, while (wg, )=0 and (wh, h)>0 since positive
eigenpairs have eigenvectors orthogonal to G in (w-,-) by the arguments preceding this
theorem. It follows that (L, — k)v, v) < A(wv, v), and:

4% gof Ly —Ryu, u)
= uevt wu,u)
(wu,u)>0

We remark that if j=1 then G={0} and L, +tw>0 for some 7 by Theorem 2.0.
Theorem 2. 8 is then contained in the classical min.-max. principle for (left) definite
problems.

For completeness, we observe heuristically that it may be possible to increase the
dimension of the space V on the left hand side of (2. 4). This could, in principle, improve
the estimate and would be done by counting not only the i positive eigenfunctions
corresponding to (u, k) with p <4, but also some eigenfunctions z corresponding to
nonpositive pairs (4, k) — of higher eigenspace multiplicity — and such that (wz, z) >0.
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If such eigenfunctions satisfy the various orthogonality relations needed in our
arguments, they could also be used in the proof of Theorem 2. 8. Possibly, one could
also enlarge M along the same lines. While abstract results can be stated along these
arguments, estimate (2. 4) suffices for our explicit examples and we continue to work
with it.

As an immediate consequence we note the following Corollary which shows that if
j=i then no ghost states are present and the min.-max. principle holds.

Corollary 2.9. Let k be fixed and (4, k) be the (i, j)™ positive eigenpair.
(@) j=i+sup{|G|;GeM}.

(b) If j=i then there are no ghost states and

@.5) A=sup| inf (Ly —K)u, u) .
S ueSt 0 (W u, u)
(wu,u)>

(c) There exists a constant C=C(k) such that, for any 2, (2.4) holds with
dimV=i—1+4|G|,dmS=i—1+|G|+C.

Proof. (a) This is similar to the proof of Theorem 2. 0(c). Suppose j <i+ |G,| for
some G,. Without loss of generality, we may assume that L; — Aw —k has j nonpositive
ordinary eigenvalues but that the j+ 1* is positive, since, if this is not the case, by our
numbering scheme we need only replace (i, j) by (i +m, j+m) for some m not exceeding
the multiplicity of (4, k). We also note that there exist i positive eigenvectors {u,}} of

i |Gol
(Ly —k)u,=A,wu, with 2, <A. Consider the vector t= ) cu,+ ) d.g with g, € G,.
=1 =1

We select c,,d, so that ¢ is perpendicular to the eigenvectors in the nonpositive
spectrum of L, —Aw—k. Since {u.},{g.} are linearly independent, t+0. But
(Ly —k)t, t) < A(wt, t) whence (L, — k — Aw)t, t) < 0. This contradiction shows the result.
Next, for part (b), if j=i then G={0} from part (a) and the min.-max. follows from
Theorem 2. 8, since the trial spaces S, V in (2. 4) have the same dimension. Finally, for
part (c) we merely employ Theorem 2. 8 and Corollary 2. 7.

For future convenience we also state:

Corollary 2. 10. Let k be fixed and let (4, k) be the (i, j)™ positive eigenpair with
j=i+|G| for some G € M. Then (2. 5) holds for A with dimS=j—1, $* n G={0}.

We now remark on the relation of our results to previously known estimates for
the cases of “no negative squares” (see e.g. [20], [25], [5]). An example is known (see
[2] and below) where the (1, 2) and (2, 2) positive eigenpairs exist and there are no ghost
states. Consequently even if M consists only of {0} then we cannot conclude i=j for
all i, j. In the same example, it can be shown that setting dim S=0 in (2. 5) (i.e. S={0})
yields — oo, while dimS =1 gives the (2, 2) eigenpair. The details of these remarks are
given at the end of this Section. What this shows is that, even if no ghost states present,
we cannot hope to precisely locate all eigenpairs (i, j), for fixed k, by a max.-min.
argument of the above type, and the preceding results cannot be strengthened in this
direction. Observe that the fact that the (4, k) in the example are not positive (in the
sense 4> 0) is irrelevant, since these results are independent of shifts in 4.
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We proceed to show, however, that under suitable assumptions a variant of the
min.-max. is valid for fixed k and large (depending on k) A regardless of the presence of
ghost states. We conjecture this is true in general.

To formulate these results we observe that if L,u—Awu=ku, with A complex,
then by Corollary 2. 5, (L, — uw—k)~! exists for some u. We thus have:
1
(A—n

u=Tu

where Tu=(L,—uw—k)"'(wu) is a compact map from L?— I? by the Sobolev
Embedding Theorems. Assume u is the only eigenvector but that the root subspace has
dimension 2. We conclude that, for some v, L, v — Awv — kv =wu, whence (wu, #7)=0 by
the Fredholm Theory. Conversely, also by the Fredholm Theory, (wu, 1) =0 implies the
existence of v such that L,v—Awv—kv=wu. It follows that a nonreal 1 has root
subspace of dimension at least 2 iff (wu, #)=0 holds, as well as our earlier relation
(wu, u)=0. Given any ball B and operator T we denote, in the sequel, by R(B, T) the
total root dimension of T in B.

We also assume from now on that u{x|w(x)=0}=0.

Theorem 2. 11. Let k, be as above and assume that for any k <k, all eigenvalues
of Lyu—ku=Awu have one dimensional eigenspaces and root spaces of dimension <2.
Let L, u—kou=Awu with 1> 0 sufficiently large. Then:

2. 6) A= sup [ sup inf M]:I
1 4

GeM uevi (wu, u)
GnVi={0} (wu,u)>0

where dim (V') depends on A. Conversely for dim V sufficiently large, the right hand side of
(2. 6) gives an eigenvalue of L, u—kou=Awu.

It is useful to first show the following result. We recall that y = f(x) is said to have
a strict local max. (resp. min) at x = x, iff f(x)> f(x,) (resp. f(x) < f(x,)) for x near x,,
X¥FXg.

Lemma 2. 12. Under the conditions of Theorem 2. 11, let L,v—kv=Aywv have a
real ghost state for some A, with k < k. Then k=k;(4,) for some j is either a strict local
max. or a local min. of the curve y = k;(4).

Proof of Lemma 2. 12. Since the eigenspaces are one dimensional, the curves
y = k;(4) must be twice continuously differentiable. Suppose 4, is associated with a ghost
state then kj(4,)=0 but k;(4,)+0 since the root space does not exceed two. These
remarks follow immediately from the formulas kj(4,) and kj(4,) need satisfy by
perturbation theory (see [11], [23]). We conclude that k; has either a strict maximum or
minimum at 4,.

Proof of Theorem 2.11. For A, chosen sufficiently large, we associate (4, ko)
with the (i, j)™ eigenpair as before. Consider the curve y=k;(1) with j chosen so large
that all ghost states associated with eigenvalues of the problem for 0 <k <k, =k;(4,)
have real part properly inside the values of the two members of k; ! (k). This is possible
for A, (i.e. i) sufficiently large by Theorem 2. 1. Let 0 > k be small enough.
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By Theorem 2.0, L, u—ku=Awu will have positive solutions and the min.-max.
will apply. We conclude

. Liu—ku,u
A= sup inf Ll——’—l
W ulWw (wu, u)
dimW=j-1 (wu,u)>0
GAWLi=(0}

Here dim W=i—1=j—1 (as G={0}) and formula (2. 6) holds. Let now k 1 k, and
let i, =i, (k) denote the number of positive eigenpairs (u, k) of L, u=puwu+ku with y
not exceeding the larger member of k; ! (k). Note that if k is small, then i, (k)=j, by the
positivity of the problem. Given any k we consider the following set G € M = M (k). Let

G, (k)={u | u is a real ghost eigenvector for some (4, k)},

G,(k)={u| u is a complex ghost eigenvector for some (4, k) with associated
root space of dimension 1 and Im 4> 0},

G;(k)={u | u is a complex ghost eigenvector for some (4, k) with associated
root space of dimension 2 and Im 4> 0}.

Set G(k)=span {G, (k) U G,(k) U G;(k)u G;(k)}. Then G e M (k) since, in particular, if
u € G;(k) then (wu, 1) =0. We claim that i, (k) + |G (k)| = j for k <k, whence it will follow
that i; (ko) +sup {|G|, G € M(ko)} = j and the result. To see this, set f(k)=i,(k)+|G(k)].
Observe that f(k)=j for k sufficiently small as was noted earlier. We use a standard
argument to show that f is constant. Let k; <k, be given and set: kj '(k,)={4;, 4,},
S={A|(4, k,) is an eigenpair of (2. 3), Re(4) € [4;, 4,] and the eigenvector is positive or
in G}. Since S is finite and S+ by choice of j, we construct a family of disjoint spheres

P
{S:}7-1 such that Sc (] S; and |S N S;|=1. Without loss of generality we may assume
i=1

T,,=(L—k;)"'w exists, and we apply once again the root subspace continuity

argument. Observe that if (y, k;) is a positive eigenpair with g in S; then S; must contain
a 6 with positive eigenpair (0, k, +¢&) for ¢>0 sufficiently small. Exactly the same
argument applies if (y, k;) is associated with an eigenvector u with u € G, (k). If (y, k,) is
an eigenpair with y e G, (k) then by Lemma 2. 12 we find that S; contains é with either
(0, ky +¢) a positive eigenpair or the pair (6, k; +¢), (5, k; +¢) with 6+ 6, whence the
eigenvector for one of the pair (§,9) is in G,(k, +¢). Finally, if ue S; with associated
eigenvector in Gj(k,) U G;(k,) then by continuity, either é € S; for some (9, k; + &) with
eigenvector also in Gj(k, +¢&)uU G5(k, +¢) or there exist a pair (J;, k, +¢), (8, k; +¢)
with d,, 0, € S;, §,, 6, complex and J, * J,, but sign(Imd,)=sign(ImJ,). By symmetry,
(u, ky) with p € S; implies the existence of (4, k;) with ji € S; for some j and we conclude
that (;, k; +¢), (3,, k; +¢) € S;, whence we may assume Im (4,), Im(d,) >0 and conclude
that the two associated eigenvectors are in G, (k, + ¢). In either case, we replace a pair of
eigenvectors in G,(k;)u G;(k;) corresponding to (ji, p) by either a pair in
G (k, +&) U G, (k, +¢) or by a pair in G,(k, +¢). This shows that f(k, + &) = f(k,). Now
let g(k) represent the same set as f(k) with Im(4)>0 replaced by Im(4) <0, positive
eigenpairs in S replaced by negative eigenpairs in S. We conclude, exactly in the same
way, that g(k, + &)= g(k,). But note that g(k,)+ f(k,)=g(k, + &)+ f(k, + &)= total root
space dimension in the slab Re 1 € [4;, 4,]. This is a constant in k since by choice of j
no eigenvalue associated with a ghost state can have real part in (— o0, 4;] U [4,, o),
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and all eigenspaces are one dimensional by assumption. We thus conclude if &> 0,
sufficiently small, that f(k, +¢&)=f(k,). But our arguments are reversible, whence also

S (ky —e)=1(ky).

Since the number of eigenpairs we consider for any k is finite and bounded
independent of k (recall: j=i,(k,)+|G(k,)|), we conclude that f(k,)=constant for
ky <k,, whence f(k,)=].

We may use these results to give existence and localization criteria for complex
eigenvalues. In view of the simplicity requirements, Corollary 2. 10 may be more
suitable than Theorem 2. 11 if n> 1.

Theorem 2. 13. Let 6 =max k,(4),
A€R
m=inf{k | 1 € k; ' (k) such that (4, k) is associated with a ghost state, j=2}.

Then for k € (3, m) there exist two complex eigenvalues of Problem (2. 3).

Proof. Let maR;( ki(A)=0 be achieved at A=1,, and assume ke (d, 6 +¢), €>0
Ae

sufficiently small. Observe that if 0 <k —J <& then the nearest real eigenvalue of L, —k
to A, comes from the graph of y =k, (4). Since k, (1) is simple for all A, we conclude that
for ¢ small, L, —k has no real eigenvalue near A,. Once again, consider the problem:
Ty(u)= (L, —k)~! [wu] =(1)"'u. We again apply the perturbation theory argument and
conclude T, has an eigenvalue near 1/4,, i.e. there exists u such that (L, —k)u=pu(k)u
with u(k) near A,. From our earlier arguments, u(k) is complex. We conclude, from the
simplicity of y=k,(A), that u(k), u(k) are the only (complex) eigenvalues near 1,. This
pair cannot recombine until k =m, whence the existence follows.

To apply our results we need an estimation of m, §. For some cases this is easy:

Cbrollary 2.14. Let Q=(—a,a)x(0, a) in R? and assume w(x, y)=—w(—x, y). If
2 2
ke (% 12—, —Fz—) then Lu=(—A—k)u=Awu has exactly two complex (purely imag-
, o 5 n? 2n? .
inary) eigenvalues. If k =32 k = then this operator has a real ghost state.
2
If kL2 g—z— then the min.-max. (2. 5) holds unchanged for positive eigenpairs, with smallest

trial space S of dimension =2, $'n G=/{0}.

Proof. We apply the ideas of Theorem 2.13 and the symmetry of w, Q to
2 2
conclude 6 = izz . We thus find for k € (5 -

i

2n? .
7 a complex pair u, i which must

be purely imaginary or, by the symmetry of the problem, there would be at least four:

W, fi, —p, — ji. This would contradict the observation, shown below, that there are at
2

. . . . T . .
most two. This pair cannot recombine earlier than at m=2;2~. Again by our earlier
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2 2

5 2
results (L—k)u=Awu has a real ghost state at 12 aiz' Finally, to see that there
2
are exactly two complex eigenvalues, observe that for k<2n—2, L—k has only one
a

negative (classical) eigenvalue, whence there can be at most one complex . pair {yu, i} of
eigenvalues by the remarks following Theorem 2. 0. Finally, to see that (2.5) holds,
observe that there can be no other ghost states but the eigenvectors of {u, i} by our
arguments, whence all real eigenpairs (4, k) (for k in this range) must be positive or
negative. We thus have the (i, i + 1) positive pairs for i=1, 2, .... Since

j=i+1=i+sup{|G|, Ge M}

the min.-max. holds by Corollary 2. 10.

We conclude with the example mentioned after Corollary 2.10. In [2] the
following problem is considered:

—y'—ky=2Awy,
y(£1)=0,

w(x) =sign x,

and numerical tabulation of eigenvalues A (as functions of k) is given. In terms of our
notation we give some of these results as: consider

—y'—Awy=k,(A)y.

Then k,(4) has a minimum at A=0 of n2 Observe also that, as mentioned earlier,
—y"—k;j(A)y=4iwy has a root subspace of dimension 2 iff k;=0 but k/+0 at 1. The
root subspace of k,(4) at A=0 has dimension two (from the two complex eigenvectors
being absorbed) whence k340 and for A near zero, kj(4)= —(wu, u) <(resp. >)0 if
A< (resp. >)0. We conclude that for fixed k>n? near n?, there exist 4,, A, near zero
such that A;(wu;, u;)<O0 for i=1, 2. Since for such k, —y”—ky has only two negative
eigenvalues, the estimate of Theorem 2. 1(c) shows that there are no other A such that
A(wu,u)<0. In particular, there are no ghost states and if —y”"—Awy=ky and
A;%A>0 then (wy, y)>0. We conclude that if 1€ k;'(k) (with j>2) then kj(1)=0.
We must therefore have, for this k, the positive eigenpairs (1,2), (2,2), (i,i) for
i=3,...,00 with the A associated with the (1,2) positive eigenpair less than zero.
We conclude that A corresponding to the (i, i) positive pair is given by the min.-max.
over spaces of dimension i—1 for i=2,..., while the min.-max. over spaces of dimen-
sion O (i.e. the min. over (wu, u)>0) gives — oo by the choice:

sin<1t(x+1—£:)
2—¢
0 x<—1+¢

) x>—1+¢,

U, =

and letting ¢ — 0*. This shows, as earlier stated that the (1, 2) positive pair is not given
by such a min.-max. formula, but that the others are.
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3. The elliptic case for n=1

We now consider the extensions and implications of the results of Section 2 to the
case of ordinary differential operators which are not uniformly elliptic. We immediately
observe from Theorem 2. 4 that if u;® is the eigenfunction of (2. 2) corresponding to AF
as given in Theorem 2. 2(e) then there exists an integer J,, such that for j > J, then

# of zeros of (uf, ;)= # of zeros of (uff)+1,

while if we set
z(k)=inf {3 of zeros of u | (L, —k)u=Awu}

then lim z= oo0. This shows the existence for regular problems of the indices introduced

k= o

below, which was first shown by Richardson [24] and Haupt [8], for the regular case
and by Mingarelli [17] for more general coefficients. We also point out that it is
inconvenient for what follows to term (4, k) positive iff (wu, u)>0. Instead we shall
henceforth term (4, k) positive iff 1> 0 unless otherwise specified. Furthermore, in this
section we shall assume the more general conditions: 1/p, q, w € L(a, b), p(x)>0 a.e. on
(a, b) and w not a.e. zero. Note that here we allow — unlike Section 2 — p to vanish on
some sets of measure zero. If the coefficients are regular many of the results follow
immediately from Section2 as we indicate below. The boundary problem under
consideration is

(3.1 ly=—=(px)y) +q(x)y=4iw(x)y,

(3.2) y(@=0, y(b)=0,

We recall that we assume that 41=0 is not an eigenvalue of (3. 1), (3. 2) and that the
problem

(3.3) ly=4y,

(3.4 y(@)=y@b)=0

has exactly N negative eigenvalues {4,}}_, (with 4, <4, if j>i) with N>1.

The Richardson index, ng, of (3. 1), (3.2), (A>0), is defined as that smallest non-
negative integer for which (3. 1)—(3. 2) has no real eigenfunctions with precisely n zeros
in (a, b) for n<ny whereas for n=>ng there is at least one real eigenfunction having
exactly n zeros in (a, b). (For negative eigenvalues the Richardson index, ng, is defined
accordingly.)

The Haupt index, nj;, of (3. 1)—(3.2), (1>2) is defined as that smallest non-negative
integer for which there is precisely one (independent) real eigenfunction with n zeros in
(a, b) for each n=ny;. (A similar definition applies for the negative eigenvalues.)

For general measurable coefficients their existence is part of the folklore in the area
(see [14]). The estimates to be derived below are for the indices nj, nj;. Similar
discussions apply to ng and ny and so will be omitted. We note that ng < nj; in general.
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As in the regular case, there exist an infinite sequence of positive and negative
eigenvalues of the problem (3. 1)—(3.2). This is discussed in [14]. If w(x) is a.e. of one
sign on (a, b) the definitions of the Haupt and Richardson indices coincide [6] and there
is an at most finite negative spectrum.

We denote the first positive eigenvalue of (3. 1)—(3.2) by A*. The number A" (1*)
denotes the number of zeros of a corresponding eigenfunction in (a, b).

Theorem 3. 1. (a) For N =1, A (A*) is either equal to N or N —1.

(b) If #(A*)=N, N=1, we have 0<ng <N <nj.

() If ¥(A*)=N—1,N=2, we have 0<ng <N —1Znj.

All the estimates are precise. (Similar estimates hold if A* <0.)

Proof. a) Let y(x, Ay) be the eigenfunction of (3. 3)—(3. 4) satisfying y(a, Ay)=0,
(py’) (a, 4y)=1. By Sturm-Liouville theory y(x, Ay) has precisely N —1 zeros in (a, b).
Writing y(x, ) for the solution of (3.3) which satisfies y(a, )=0, (py')(a, A)=1 it
follows that y(x, 0) must have precisely N zeros in (a, b). Thus every non-trivial solution
of

—(p(¥)y') +4q(x)y=0,
y(@=0, (py')(@=+0

must have precisely N zeros in (a, b). We introduce a Priifer angle in the usual way: Let
tan0(x, 1) =y(x, 1)/(py’) (x, A) where y is a solution of (3. 3). Then @ is uniquely defined
by the condition 0(a, )=0 for each A. Since 0 increases at each zero of y and those 1’s
for which 6(b, A)=nn,nel are the eigenvalues, it follows that since y(b, 0)+0, by
assumption,

3.7) Nr<0(b, 0)<(N +1)x.

Now let ¢(x, 1) denote the Priifer angle for (3. 1) defined uniquely by the requirement
that ¢(a, )=0 for each A. Let z(x, A) denote the solution of (3. 1) satisfying z(a, 1)=0,
(pz’) (a, A)=1. Then the Priifer angle for z must satisfy

@(b, 0)=0(b, 0)
(since y(x, 0)=z(x, 0) for each x). Thus, by (3. 7),
(3.9 Nrn<eo(b, 0)<(N+1)z.
It now follows that either ¢ (b, A*)= N in which case /' (A*)=N—1 or @ (b, A*)=(N+1)=,
in which case 4" (A*)=N. This proves (a). We now prove (b), the proof of (c) being
omitted as it is completely analogous to this case. Let A '(A*)=N. We show that
ng =ng < N. For if ng> N then, by definition, there can be no eigenfunction having N

zeros in (a, b). But z(x, 4*) is such a solution. Hence

0<ng<N.
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In order to prove that nj; =N we assume, on the contrary, that ny=nj; <N —1. The
following argument shows that it is sufficient to prove that ny =N —1 is impossible. If
ng =N —1 then for each n= N —1 there is precisely one eigenfunction having n zeros in
(a, b). In particular, there is precisely one eigenfunction having N —1 zeros and precisely
one eigenfunction having N zeros in (a, b). Returning to our Priifer angle ¢ we see that
there are now three cases: (1) For every A>A* o(b, )=(N+1)n. (2) For every
A>A* @(b, )= Nn and (3) There exists A* > A* for which ¢(b, A*)<Nn. In the first
case every eigenfunction has at least N zeros in (@, b) and thus ng =N which is
impossible. In the second case ¢ (b, ) =(N + 1)7 has at least two solutions for 4, and so
there are at least two eigenfunctions with N zeros in (a, b), i.e. ngy =N +1 which is a
contradiction. In the last case there exists A* <A< A" such that ¢(b, )= N= but since
@b, ) — +0 as A— +oo (see [3]) it follows that there exists u>A* for which
@ (b, p) = N = again, i.e., there are at least two eigenfunctions with N —1 zeros in (a, b) so
that ny = N. This final contradiction proves that ny =N —1 is impossible. Thus ng = N.

Observe that if the coefficients are regular so that the results of Section 2 apply,
we may give a short proof of Theorem 3. 1 which we sketch as follows: since A* is the
first positive eigenvalue and has M = A (1*) zeros, then k,,,,(A*)=0 and k,,,,>0 in
[0, A*], kpy <0 in [0, A*]. If kp; 4 ,(0) > O then [ has exactly M negative eigenvalues, while
if ky+1(0)<0 then I has exactly M +1 negative eigenvalues. Since ng, nj; count
intersections of the A axis with the curves y = k;(4), the estimates follow.

To show the sharpness of Theorem 3. 1 we consider the following examples.

1. (Precision in Theorem 3. 1(b)) The example
—y"'=9n?/16)y =Aw(x)y,
y(0)=y(2)=0

where w(x)=sgn (1 —x) on (0, 2) shows that nf =nj;=1=N.
2. That nj =0 may occur can be found in [17].

3. (Precision in Theorem 3. 1(c).) Here the second example on page 40 of [2]
shows that N =2, A/ (A*)=1, while nz =1 and nj;=2.

We now focus our attention on the existence of simple non-real eigenvalues. We
recall that an eigenvalue (real or not) of (3.1)—(3.2) is said to be non-simple if it is a
double zero of the characteristic equation defining it.

Lemma 3.2. Let 1€ C be an eigenvalue of (3.1)—(3.2) and y(x, 2) a corresponding
eigenfunction. Then A is non-simple if and only if

3.9 (wy, y)=0.

Proof. See [16], [19]. Also note the Fredholm arguments given in Section 2 for
regular coefficients.
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Lemma 3.3. Let Ae C, ImA+0 be a non-simple eigenvalue of (3.1)—(3.2). If
y(x, A)=u+iv is a corresponding eigenfunction then

(3. 10) (wu, v) =(wu, u)=(wv, v)=0,
(3. 11) (lu, wy=(lv, v)=0

and
(3.12) (lu, v)=0.

Proof. From (3.9) it follows immediately that
(3. 13) wu, v)=0, (wu, u)=(wo, v).
Furthermore, since Im A+ 0, we know that (see e.g. [24])
(3.14) (wy, y)=0.
Combining (3. 14) with (3. 13) we obtain (3. 10). Now since 4 is a (non-simple) eigenvalue
1y, y)=4(wy, y)=0.

Separating real and imaginary parts yields (3. 12). However, since Im 440, we also have
(ly, y)=0, from which (3. 11) follows.

Theorem 3. 4. Assume | has one negative eigenvalue. Let w € L(a, b) be chosen so
that (3. 1)—(3. 2) has non-real eigenvalues. Then every non-real eigenvalue is simple.

Proof. Let yp be a (real) eigenfunction corresponding to 4,, the smallest eigen-
value of (3. 3)—(3. 4). Then p(x)>0 in (a, b) and by the Courant min.-max. theorem,

Y
& 13) Ay = 1ol {(f, 9 }

where A, is the next largest eigenvalue, (the usual extremal properties of the
eigenvalues), and

o ={feAC[a, b]:pf'e AC[a,b], f£0, f(a)=f(b)=0 and (f, y)=0}.

If possible, let w e L(a, b) be such that the corresponding problem (3.1)—(3.2) has a
non-simple non-real eigenvalue, A. Since N =1, there are precisely two such eigenvalues
A, A (since they occur in complex conjugate pairs and the simplicity of A is equivalent to
that of 1), see [15]. Let u +iv denote an eigenfunction corresponding to A. Then we can
choose a, B € R such that ¢ =au+ Bv is L2-orthogonal to y, i.e., (¢, ) =0. We see that
¢ %0, since ¢ =0 forces u= —av i.e. the complex eigenfunction can be chosen to be real
and this is impossible since Im A+ 0. Furthermore ¢ € . But Lemma 3. 3 then shows
A, =0 which is contrary to our hypothesis.
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Let 4, ImA+0, be a simple non-real eigenvalue. We may then normalize a
corresponding eigenfunction by setting (wy, y)=1. In this case, if we assume p=1 for
simplicity, an estimate for |Re 1| may be obtained provided some qualitative results for
the solutions are available. For example one can show that

|Reug(1+e+@> 113
Ao
where ¢ >0 is arbitrary, 4, >0 is the smallest eigenvalue of —d?/dx? on (a, b) and
1 /% 2
c(a)=; (_f |q|dx> .

Here |y’||, denotes the usual L?-norm of the derivative of the eigenfunction y
defined above. In order to prove this we use the inequality

§Qf2dx éc(s)i|f|2dx+a}|f’|2dx

‘along with Wirtinger’s inequality.

4. Mixed problems

While Section 2 dealt with uniformly elliptic problems and Section 3 with possibly
degenerate elliptic problems, this section deals with mixed problems for the case n=1,
i.e. p need no longer be of fixed sign. We know of no counterpart of such results for the
case n> 1. As usual we do, however, assume 1/p, g, w € L(a, b) and w not a.e. zero.

In the first place we show that most of the results in Section 3 cannot be
improved upon by neglecting a sign condition on p(x).

Example. Let g=0 in (3. 1)—(3. 2), w=p and consider the boundary problem
—(p(x)y’) =Ap(x)y,
y(=1)=0=y(1)

where p(x)=sgn(x). We recall that solutions y e AC[—1, 1] along with py’.

Now for each 4 € C\{0}, fixing a determination for the root, the function
sin [J/2 (1 —|x])]
VI 2

satisfies the differential equation and the boundary conditions. Thus y is an eigen-
function for each A+0. If A =0 we may define an eigenfunction by

y(x, )= —1Ex< +1

x ds
O)=— | —.
H=) 21 p(®)
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Thus every Ae C is an eigenvalue of this problem. This example, first reported in

passing in [3] in the context of spectral asymptotics and oscillation theory has the
following features:

1. There is an interval IR (e.g. I=(0, 1)) corresponding to which each A€ I
generates a positive eigenfunction (in (g, b)), in sharp constrast with the results of
Section 2 (see also [1]).

2. The operator T defined by
(T)x)=—=(px)f")

on D(T)={fel*(—11):f,pf e AC(—1,1),(pf’) e *(—1,1) and f(—1)=0=f(1)}
has infinitely many negative eigenvalues, and this in turn, puts no restriction on the
number of pairs of non-real eigenvalues, cf,, [15]. When p(x)>0 a.e. T, as defined above
is semi-bounded from below.

3. The Richardson index ng =0 while the Haupt index does not even exist! If
A <0 all the eigenfunctions are non-zero in (—1, 1). Thus ng does not exist!

4. Every real eigenvalue is non-simple, in contrast with the case p(x) >0 a.e. [16].

We remark that if on the space L*(—1, 1) we introduce the generally indefinite
inner product [,] by

1
/8= | fepdx

where p(x)=sgnx, as in our example, we turn L*(—1, 1) into a Krein space which we
denote by K, (for these notions again see [4]). The operator T defined by

s

(TN 0=~

(P(x) f* () (x)

on D(T)={fe AC(—1,1), pf e AC(—1,1), Tfe L*(—1,1) and f(—1)=0=f(1)} satis-
fies the relation

[T gl=L/ Tgl, f geD(T).

Thus T is a symmetric linear operator on K. Furthermore ¢(T)=C and in fact the
spectrum is pure point. Thus T is a symmetric linear operator on a Krein space K
whose spectrum is pure point only and fills all of C.

H. Langer gave the apparently only other known example of a symmetric linear
operator on a Krein space whose spectrum fills all of C. In his case however, the
spectrum is purely continuous.

21 Journal fiir Mathematik. Band 398
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In the sequel we make use of the “reciprocal transformation”, see e.g. [22]. That
is, let p, g: [a, b] — R, 1/p, q € L(a, b). If y is a solution of the equation

(Px)y') +4q(x)y=0

then z=py’ satisfies the “reciprocal equation”

LIS SO T
(-q(—x)'z>+p(x)2—0

Use of this transformation permits the study of (3. 1—2) when the leading term p(x)
changes sign in (a, b). For a given solution y, the function z=py’ will be termed the
“derivative solution”.

Observe that if g(x) is a.e. of one sign on (a, b), then for any real nontrivial
solution y of

(P(x)y’) +q(x)y=0,

the derived solution has only finitely many zeros in [a, b]. (This is obtained by applying
Sturm theory to the reciprocal equation.) It is possible that y itself has an infinite
number of zeros in [a, b], (see [3]). If p(x), g(x) € C[a, b] and q(x) is of one sign on
[a, b] then between any two zeros of py’(x) there is always at least one zero of y.

Let 1/p;, g;€ L(a, b),i=1, 2 and ¢q,(x)> >0 a.e. on (a, b). If,

1
P P

and q,(x)<q,(x) a.e. on [a, b]

then between any two zeros of the quantity p, y; where y, is a solution of

P1y1) +q1y1=0

there is always at least one zero of every quantity of the form p,y, where y, is a
solution of

(p2y3) +42y,=0.

(This may be shown by applying Sturm’s comparison theorem to the reciprocal
equation.) Let 1/p, qe L(a, b),q a.e. of one sign on (a, b). Then between any two
consecutive zeros of a derived solution there is exactly one zero of every other derived
solution linearly independent of the first. (This follows from Sturm’s separation theorem
applied to the reciprocal equation.)

We now focus on weighted-problems with indefinite leading-terms.
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Theorem 4.1. Let 1/p, w e L(a, b), w(x)> >0 a.e. on [a, b] and p(x) changes sign
on sets of positive measure. Then the Neumann problem corresponding to the equation

—(p(x)y') =Aw(x)y on [a b]

(i.e., py'(a)=py'(b)=0) has a sequence of eigenvalues A L {0} with

e <A <Ap <0< Al <Af < -

and
b 2
Iy n’ft’/(f (W/p)+ dS)
as n— oo.
Furthermore the derived solutions corresponding to A5 are strictly positive in (a, b).
Proof. The reciprocal equation here is of the form
1 S |
—\|\—=2Z)=——z (A=*0)
(/1W(x) ) p(x)
and the corresponding boundary problem is of Dirichlet type, i.e.,
z(@=0, z(b)=0.
Thus, for 440, we seek A € C such that
( 1 z,)' A
w(x) p(x) ’

z(@)=0, z(b)=0

has non-trivial solutions. But it is known that this problem has a doubly infinite
sequence of real eigenvalues only whose asymptotic behaviour is as above, [3], and with
eigenfunctions z(x, A5) being strictly positive in (a, b). The result now follows via the
“inverse” reciprocal transformation.

We note that for reasons alluded to earlier it is unlikely that one may replace
“derived solutions” by the actual eigenfunctions y.
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