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Discriminants of certain algebraic number fields

By Kenzé Komatsu at Tokyo

The main purpose of this paper is to prove Theorem 1, Theorem 2 and Theorem 3 in
§ 3. Let A, Band n(n > 1) be rational integers such that

f(x)=x"+Ax+B

is irreducible over the rational number field. In our previous paper [2], we studied the
algebraic number field K of degree n defined by f(x)=0. Assuming certain conditions
on 4, Band n, we obtained an integral basis and the discriminant of K. In the present paper,
we study the discriminant of the minimal splitting field of f(x) =0. One of the simplest
cases will be treated in Theorem 1. More complicated cases will be discussed in Theorem 2
and Theorem 3. To prove these theorems we require some results of our previous paper [2].
We also require some lemmas on ramification theory, which will be described in §2.
In particular, Lemma 1 plays a fundamental rdle throughout this paper. As another
application of this lemma, certain properties of algebraic number fields of prime degree
will be discussed in §4. For a general discussion of ramification theory, the reader is
referred to Hilbert [1].

A special case of our Theorem 1 was treated in Uchida [5], [6] and Yamamoto [7]
in connexion with unramified extensions of quadratic number fields. The author is
grateful to Dr. N. Adachi for his advice and criticism.

1. Notation and terminology

For a prime number p and a rational integer a, a, denotes the largest integer m
such that a is divisible by p™, i.e.

p*la, p* ! fa.

When a =0, we define a, = co. We denote the ring of rational integers by Z, the rational
number field by Q, the order of a finite group G by |G|, and the norm (resp. the relative
norm with respect to K/k) of an ideal a by N(a) (resp. Nk (a)). The notation [X: Y] means
either the index of a subgroup Y of a group X, or the degree of a finite extension X of a field Y.
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An algebraic number field always means an algebraic number field of finite degree.
Let K, k be algebraic number fields such that K> k. Then the minimal algebraic number
field K such that (i) K/k is normal, (ii) K is contained in K (in other words, the composition
of all the conjugate fields of K over k), is called the Galois closure of K/k. If ‘B is a prime
ideal in K, the i-th ramification group V; of ‘B with respect to K|k is defined by

Vi={veZ, " =a(mod Pi*!) for every integer a of K},

where Z is the decomposition group of B with respect to K/k, i=0. If M is a subset of a
group G, the group

{geG,gm=mg forevery me M}

is called the centralizer of M in G.

2. General preliminaries

Lemma 1. Let K, k be algebraic number fields such that K >k and let K be the Galois

closure of K/k. Let p be a prime ideal in k and let B, ..., B, be distinct prime ideals in K
such that

p=P5... B, Ngu(B)=p’".
FEurther let
the prime number divisible by p,
a prime ideal in K which divides p,
the Galois group of K/k,
the Galois group of K/ K,
the decomposition group of ‘B with respect to K|k,
the inertia group of B w. r. to K|k,
; the first ramification group of Bw. r. to K|k,
Cc(D): the centralizer of T in Z,
c): the centralizer of Vin T,
Aut(T):  the group of automorphisms of T,
Aut(V):  the group of automorphisms of V,
E=|T|: the ramification index of p w. r. to K|k,
F=|Z/|T)|: the relative degree of p w. r. to K|k,

STENZOQEE

a: the least common multiple of e,, . . ., e,

b: the least common multiple of f1, . . ., f;,

a' the least common multiple of the ;(—;)—;, 1<i<s.
Then:

(@) C(V) is a normal subgroup of T, and T|C(V) is isomorphic to a subgroup of Aut(V).

(b) C(T) is a normal subgroup of Z, and Z|C(T) is isomorphic to a subgroup of Aut(T).

© IfteC(V), t" e V.

(d) [T: V]=a'm', where m' is an integer which divides | Aut(V)|.

(e Ifze C(T), 2*E=1.

(f) F=bm, where m is an integer which divides E| Aut(T)|.

() If p¥ a, then E=a, F=bm, m|ap(a), where ¢(a) is the number of rational integers
xsuchthat0<x<a,(x,a)=1.

(h) If p is unramified in K|k, F=b.

Q) 1rp>- KK

E
, p— 1 is divisible by the integer -
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Proof. For every t e T, v— t~'vt is an automorphism of V, since V is normal in T.
This defines a homomorphism of 7T into Aut(V) with kernel C(V). Thus we obtain (a).
Similarly, since 7 is normal in Z, we obtain (b).

For any ge G, (T ngHg™ ")/(V n gHg™ ') is contained (canonically) in the cyclic
group T/ V. If B?|B,,
[T:TngHg™ 1]
[V:vngHg™ ']
_[g7'Tg:g7'TgnH] ¢
C[g7'Veig ' Vgn Hl p©r

[T/V:(T ngHg ")/(V ngHg™ )]=

Hence, if te T, t*=tyv, where toe TngHg ', ve V. Now suppose that te C(V).
Then, since v* = 1, where P =p*r, we have

tP=("v Y =tfegHg ™.
Now K is the Galois closure of K/k, so that
N gHg ' ={1}.

geG
Hence t*F=1. Since [T: V] is prime to p, we obtain (c). Since [T: V] is divisible by

€
p(ei)p

for every i, [T: V] is divisible by &', i.e.
[T:V]=a'm', meZ.
Let ¢, V (¢, € T) be a generator of the cyclic group 7/ V. Then it follows from (a) and (c) that
tl IA“!(V)Ia' € V’
which proves (d).

For any ge G, (Z ngHg ')/(T n gHg™ ") is contained (canonically) in the cyclic
group Z/T, and

[Z:ZngHg™ ']
[T:TngHg™ ']

for a certain i. If z € C(T), 2> =z4t, where z, € Z N gHg ™', t € T. Hence
PP=(Pt"")egHg ™",
which proves (e). Since Fis divisible by f; for every i, Fis divisible by b, i.e.
F=bm, meZ.

[Z/T:(Z ngHg™ )(T ngHg™")]= =J

Let z, T(z, € Z) be a generator of the cyclic group Z/T. Then it follows from (b) and (e) that
z,|AWMIBE —
which proves (f).
For each g € G, we have
(V:VngHg '1=[g ' Vg:g~' Vg n H]=p“»
for a certain i. If pfa, [V:V n gHg ']=1,i.e. Vis contained in gHg ™' for every ge G.
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This implies ¥ = {1}. From (d) and (f), we obtain (g) and (h).

The assertion (i) is obvious if p ¥a. If p|a, then E,=1, since [K:k]|[K:k]!. Hence
V is a cyclic group of order p and so |4ut(V)| =p — 1. Since e; =p for a certain i, we have
a=pa'. Now the result follows immediately from (d). This completes the proof.

Lemma 2. Let K be an algebraic number field, K the Galois closure of K/Q, d the
discriminant of K, and N=[K:Q]. Let p be a przme number and let p,, ..., p, be distinct
prime ideals in K such that

p=pi...p5
If p ¥ e; for every i, then
= 1
dp = N <1 ——a-> ’
where a is the least common multiple of e, . . ., e,.

_ Proof. It follows from Lemma 1, (g) that the ramification index E of p with respect to
K/Qis equal to a. Hence we obtain

a,,=%(5—1)=1v<1-%>,

since E is not divisible by p (see Hilbert [1], Satz 79).

Lemma 3. Let K be an algebraic number field of degree n, p a prime number with

and py, ..., p, distinct prime ideals in K such that

>
P>

p=pf...p7, Np)=p'"
Further let

the Galois closure of K/Q, N=[K:Q],
the discriminant of K,
the discriminant of K,
the ramification index of p with respect to K| Q,
a prime ideal in K which divides p,
: the i-th ramification group of p with respect to K/Q,
the minimum integer i such that i 20, V;,, = {1},
the least common multiple of ey, . . ., e,.

< Ty AR

-
~
v
=}
~—~

8 R

Then

p(p—i)u
Zf+ z

N<1—715->=N<1——;-> Pta
%’—{E—1+(p—1)u} (@la).

Journal fiir Mathematik. Band 285 16
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Proof. Suppose that p¥a. Then u=0 (Lemma 1, (g)). On the other hand (Hilbert
[1], §12)

d,= 'é (e;,—1) fi=n —.éfi.

n
2
may suppose that e; =p, p|p;. Let d be the different of K/Q. For every i, suppose that d
is divisible exactly by pP®. Since N|n!, we have E,=1 and so V; n H={1}, where H is
the Galois group of K/K. Hence

Next suppose that p|a. Since p>—, and u is independent of the choice of p, we

DW=, -+ 22D,

and D())=e;—1 for every i>1 (Hilbert [1], Satz 41, Satz 79 and §12). Since f; =1,
it follows that

dy=3 DO fi= ¥ (e— 1) fi+ZEDL
i=1 i=1 E

The last equality follows immediately from Hilbert [1], Satz 79.
Lemma 4. Let a(0), a(1), ..., a(n—1) be rational integers (n 2 1) and let p be a prime
number such that
0<a(0),<a(), (0=i<n—1),(a(0),, n)=1.
Then

n—1
f)=x"+ Y a(ix’
i=0
is irreducible over Q, and p=1p", p a prime ideal, in Q(a), where o is an arbitrary root of

J(x)=0.

Proof. Let o be an arbitrary root of f(x) =0, and p a prime ideal in Q(a) which divides p.
Suppose that a (resp. p) is divisible exactly by p™ (resp. p°) in Q(«). By hypothesis, m > 0.
Since

n—1
—a"=Y a(i)d,
i=0

we have nm = ea(0),. Since (a(0),, n) =1, it follows that
n<es[Q():Q]=n.

This completes the proof.

3. Main results

Theorem 1. Let n (n>1), A, B be rational integers such that f(x)=x"+Ax+B is
irreducible over Q, &'V, ..., a™ the roots of f(x)=0, and d the discriminant of

K=Q@Y, ..., a™).
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Let p be a prime number which satisfies none of the following conditions:

(1) pln, 0<B,<4,,

() pln—1, 0<4,<B,,
3 pln, A4,>0, B,=0,
“ pln—1, A4,=0, B,>0,
®) A,2n—1, B,2n.

Let E be the ramification index of p with respect to K/Q, and let N=[K: Q],
D=(=1""! (n—1y""' A" +n" B"",

1

Moreover, the value of E is given by the following table.

Then

)4 E
p|D,A,=B,=0,D, odd 2
n—1
0<Ap<Bp m‘
n
< SO N—
0<B,=4, @ B)
Otherwise 1

Remark. The condition (5) is not essential. Let r be the largest positive integer such
that "~ |4, r"| B. Put
A o)

=";.T’

’ ’ B ! G,
A B—f‘,a—

=
Then o' is a root of

x"+A4'x+ B =0,

and there is no prime number g which satisfies 4,27 — 1, B, 2 n. Moreover

D
DI=(__1)’I—1 (n_l)n—l A" +n" B/n—l — r,.(,.—n .

If a prime number p does not satisfy the condition (5), then 4,=A4,, B,= B, and D,=D,.
Therefore we can use Theorem 3 of our previous paper [2].

Proof. Suppose that p|d. Then 4,=B,=0 or 4,>0, B,>0, since p|D. The result
follows from Lemma 1, (g), Lemma 2 and Komatsu [2], Theorem 2, the proof of
Theorem 3.

16*
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Theorem 2. Let p be a prime number and let A, B be rational integers such that
f(x)=xP+ Ax + B s irreducible over Q. Let

a®, ..., a®: theroots of f(x)=0,

d the discriminant of K= Q(a™),

d: the discriminant of K= Q(a™, .. ., a®),

E: the ramification index of p with respect to K/Q,

p: a prime ideal in K which divides p,

V; (i20): the i-th ramification group of p with respect to K/ Q,

u: the minimum integer i such that i20, V,,, ={1}; N=[K:Q].
Suppose that p satisfies none of the following conditions:

1) A,=1, B,=0,

(@) A,=B,>0, (B,,p—1)#1,

©) 4,2p—1, B,2p.

Then the values of d,,, E, u and d,, are given by the following table.

p d, E u d,
NQp*—2p—1)
A, >B, >0 2p—1 -1
»> By p pp—=1) | p =D
N 1
A,=B,>0 By +p—1 pp—1) |B,| —|B,tp——
P p—1
0<4,<B, p—1—-(p—1,4,) - A) 0 o1
A,>0, B,=0, N@’-2)
(—BP~' #1 (modp?) # pE=1 | 1 PG —1)
A,>0, B,=0, Np-2)
(—B)*"'=1 (modp?) P p—1 ¢ p—1
Otherwise 0 1 0 0

Proof. (See the remark of Theorem 1.) Suppose that 4,> B,>0. Since (p, B,) =1,
it follows from [2], Theorem 3, (2) that

dy=D,—(p—1)(B,—1)=2p—1,

where D=(—1)"' (p—1)»"! AP +p? B*~'. On the other hand, from Lemma 3 and
Lemma 4, we obtain
-1
() d,,=p—1+”(’;E)—“.

Hence

2oy _,
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e E
Now p — 1 is divisible by i (Lemma 1, (i)). Hence

£ 1
—=p—1, u=p.
» p

From Lemma 3 we obtain
P NQp*-2p—1)
p —3
pp—1)

Next, suppose that 4,=B,>0. Since D,=pB,, it follows from [2], Theorem 3,
(2) that

d,=pB,—(p—1)(B,—1)=B,+p—1.

From (*) we obtain
g =P@—Du
p E :

. C e E .
Now (B,,p—1)=1 by hypothesis, and p—1 is divisible by ; (Lemma 1, (i)). Hence

E N 1
—=p—1,u=B,J=—<B+ ——).
p PGy PP

Now suppose that 4,>0, B,=0. By hypothesis, 4,> 1. If (—B)?~' #1 (modp?),
then p=p” in K, d,=D,=p ([2], Theorem 5 and its proof). From (*), Lemma 1, (i) and
Lemma 3, we obtain

E . N@*-2)

—=p, =1, 4 e

p ° P -1 |
Now suppose that (— B)? "' =1 (modp?). Let a=a") and let a denote the ideal in K
generated by pand — B—a:

a=(p, —B—o).

Then a is divisible by every prime factor of p, d,=p—2, N(a)=p? and p=[]p{,
N(p)=p", ¥ f;=2 ([2], Theorem 5 and its proof). If p=2, then d,=0. E=1, u=0,
d,=0.If p#2, a cannot be a prime ideal or the square of a prime ideal. Hence a=p, p,,

(—B—w)*

P # Py, P=p 3%, e, >e,. Since a is divisible by p, is an integer of K.

Hence e, 2p—1 ([2], Theorem 5, (2). Note that r,=1). Now the result follows from
Lemma 1, (g), Lemma 2, Theorem 1 and [2], Theorem 3, (4).

Theorem 3. Let p be a prime number and let A, B be rational integers such that
f(x)=xP*! + Ax+ B is irreducible over Q. Let

M .., a®* D the roots of f(x) =0,

the discriminant of K = Q(a"),

the discriminant of K= Q(a'V, ..., a®* 1),

the ramification index of p with respect to K/Q,

a prime ideal in K which divides p,

(i=0): the i-th ramification group of p with respect to K/Q,

the minimum integer i such that i20, V,,, ={1}; N=[K:Q].

K

R maE
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Suppose that p satisfies none of the following conditions:

) A,=0, B,=1,
® 0<Ad,=B,—1, (p—A4,,p—1)#1,
3) A,2p, B,=Zp+1.

Then the values of d,,, E, u and d,, are given by the following table.

p d, E u d,
p+1 Np+1-@p+1, B))
=B, 1— 1 — T p
4,2 B,;>0 pH1=C+LB) Gy | ° p+1
NQ2p*-2p—-1)
0<4,<B,—1 2p—1 p(p—1) )4 2 —1)

N 1
0<4,=B,—1 2p—-1—4, pip—1) |p—A4, ;(ZP_A"—p——I_>
4,=0, B,>0, Np*-2)

(—4P~* #1 (modp?) P S pr—1)
4,=0, B,>0, Np-2)
_ -1 v e
(—A)P~' =1 (modp?) p-2 . 0 p—1
Otherwise 0 1 0 0

Proof. (See the remark of Theorem 1.) Suppose that 0 <4,<B,—1. Then
dy=D,—(p+1)A4,+(p—1)=2p—1,

where D=(—1)"p? A**! +(p+ 1)**! B? ([2], Theorem 3, (5)). Since p=qp® (p#4q) in K
([2], the proof of Theorem 3), it follows from Lemma 3 that

(* d,=(p—1)+_”p%.

Now p — 1 is divisible by % (Lemma 1, (i)). Hence

E NQp*-2p—1)
e —-1,u= ,a=
p 7 P =)

Next, suppose that 0 < 4,=B,—1. Since D,=pB,, it follows from [2], Theorem 3,
(5) that

d,=pB,—(p+1)A,+(p—1)=p—A4,+(p—1).
From (*) we obtain

o=
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By hypothesis, (p —4,, p—1)=1. Since p —1 is divisible by i (Lemma 1, (i)), it follows
that

E 1

“=p-tu=p—A, d,=—(2p—A,———

? p u=p p4p= » ( P — p__1>

Now suppose that 4,=0, B, > 0. By hypothesis, B,> 1. Let « =a) and let q denote
the prime ideal in K generated by p and —a:

q=(p’ _a)'

If (—A)P~ ! #1 (modp?), then p=qp? (p#q) in K, d,=D,=p (see [2], Theorem 6 and
its proof). From (), Lemma 1, (i) and Lemma 3, we obtain

E N@*-2)
—=p—1lu=1,d =————.
p " opp-1)
Now suppose that (—A4)”~!=1(modp?). Let a denote the ideal in K generated by p
and —A4 —a:
a=({p, —4A—o0).

Then qa is divisible by every prime factor of p, d,=p—2, N(a)=p? and p=q[] p,
N@)=p’", Y f;=2([2], Theorem 6 and its proof). pr 2,thend,=0,E=1,u=0,d,=0.
If p#2, a cannot be a prime ideal or the square of a prime ideal, since N(q)= p.

e e A+ a)*
Hence a=p,p,, p; P2, P=qp5'p%, e, >e,. Since qa®* is divisible by p, _oz(_i-_gl__

is an integer of K. Hence e; = p — 1 ([2], Theorem 6, (2). Note that r,=1). Now the result
follows from Lemma 1, (g), Lemma 2, Theorem 1 and [2], Theorem 3, (1).

4. Further application of Lemma 1

In this section we study an algebraic number ﬁeld K of prime degree such that every
prime ideal is unramified in K/K.

Theorem 4. Let K be an algebraic number field of prime degree I, K the Galois closure of
K/Q, G the Galois group of K/Q, and d the discriminant of K.

(1) If every prime ideal is unramified in K/K, G is a simple group.

(2) If (I, d) =1 and if every prime ideal in K has ramification index 1 or | with respect to
K/ Q, then every prime ideal is unramified in K/ K.

Proof. Suppose that every prime ideal is unramified in K/K. If p is a prime factor of d,
then

p=v', paprime ideal

in K. Let N # G be a normal subgroup of G, Fits fixed field, and H the Galois group of K/K.
Let p, be a prime factor of the discriminant of F. Then the ramification index of p, with
respect to F/Q is equal to /, since py|d. Hence [G: N]=[F:Q] is divisible by /. Since
[G: H] =!is a prime number, we have

HN=G or HN=H.
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On the other hand, since |G|, =1, we obtain |H|,= |N|,=0. Now
HN/N=~H/H n N.

Hence HN=H, i.e. Nc H. Since K is the Galois closure of K/Q, we obtain N= {1}.
Therefore G is a simple group.

The assertion (2) follows from Lemma 1, (g).

Theorem S. Let [ be a prime number such that =1 (mod 8) and let A+#0 be a rational
integer. Then there exists an algebraic number field K of degree | with the following properties.

(1) The discriminant d of K is prime to A. B

(2) Every prime ideal is unramified in K/ K, where K is the Galois closure of K/Q.

(3) The Galois group of K/ Q is a non-cyclic simple group.

Proof. For any prime factor p of /—1 and any N > 0, the congruence

x? =1 (mod p®)
is solvable. Hence there exist integers X, , y; such that
x2—I=y, (I-D"1, (x;,D)=1.
Put
01, A)=p7...P5"

Then, for each i, there exists an integer ¢; such that

I(1—1)1
1#0,x +4-C" 1T p0 (modpy.
4 plA,
pPA Y1

In fact, if p;|(/—1), we can take t;=1. If p,¥(I— 1), such a ¢; always exists since p; # 2,
piX1(I—1)""! [T p. Let t be an integer such that

t=t; (modp;)
for every i. Put
tl(l—-1)-1
PPN ! .
2
ti-1)"'M
Y=y +tIM x1+———4-——— ,
where
M= 1T p.
pl4,
) 284t
Then

x% —ll=(1— 1)1_1 Y2, (x2al)= 13 ()’2a IA)= 1.
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This implies that
{(x,)eZxZ,x*-I=(1-1) "1y, (y,l14)=1}
is an infinite set. On the other hand,
{(x,nNeZxZ,x*-I'=(1-1)""1r}

is a finite set (see, for example, Mordell [3], p. 265). Hence there exist integers a, b and a
prime number p such that

@ —F=(—1)""b, (b, 14)=1, b, £0 (mod /).

Now f(x)=x'+bx+b is irreducible (Lemma 4). Let o be a root of f(x)=0, and
K= Q(a). Then ([2], Theorem 2)

D=N(f(x))=b""" >
If gis a prime factor of the discriminant d of K, then ¢|b ([2], Theorem 2. Note that D,iseven),
and b, #0 (mod/). In fact, if b,=1Is, s € Z, then il is a root of

b b
xz+<___)x+< )=o
g s 7

and so g fd since g # [. Hence b, # 0 (mod/) and so

g=4q', qaprime ideal
in K (Lemma 4). It is easily seen that d is prime to /4. Finally, K is not totally real, since
f)=x'""+b
has imaginary roots. By Theorem 4, we see that K satisfies the conditions (2) and (3).

Remark. Theorem 4 implies that if K is an algebraic number field of prime degree /
with discriminant

d=p~1,
where fis a rational integer whose prime factors are all greater than /, then the Galois group
G of K/Q is a simple group, i.e. G is a cyclic group of order / (so that K=K) or a non-

solvable simple group. By Theorem 5 we see that the latter case may happen (cf. Reichardt
and Wegner [4], Satz 5).
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