

Werk

Titel: Discriminants of certain algebraic number fields.

Autor: Komatsu, Kenzo

Jahr: 1976

PURL: https://resolver.sub.uni-goettingen.de/purl?243919689_0285|log16

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Discriminants of certain algebraic number fields

By Kenzô Komatsu at Tôkyô

The main purpose of this paper is to prove Theorem 1, Theorem 2 and Theorem 3 in § 3. Let A, B and n(n > 1) be rational integers such that

$$f(x) = x^n + Ax + B$$

is irreducible over the rational number field. In our previous paper [2], we studied the algebraic number field K of degree n defined by f(x) = 0. Assuming certain conditions on A, B and n, we obtained an integral basis and the discriminant of K. In the present paper, we study the discriminant of the minimal splitting field of f(x) = 0. One of the simplest cases will be treated in Theorem 1. More complicated cases will be discussed in Theorem 2 and Theorem 3. To prove these theorems we require some results of our previous paper [2]. We also require some lemmas on ramification theory, which will be described in §2. In particular, Lemma 1 plays a fundamental rôle throughout this paper. As another application of this lemma, certain properties of algebraic number fields of prime degree will be discussed in §4. For a general discussion of ramification theory, the reader is referred to Hilbert [1].

A special case of our Theorem 1 was treated in Uchida [5], [6] and Yamamoto [7] in connexion with unramified extensions of quadratic number fields. The author is grateful to Dr. N. Adachi for his advice and criticism.

1. Notation and terminology

For a prime number p and a rational integer a, a_p denotes the largest integer m such that a is divisible by p^m , i.e.

$$p^{a_p}|a, p^{a_p+1} \not\mid a.$$

When a=0, we define $a_p=\infty$. We denote the ring of rational integers by \mathbb{Z} , the rational number field by \mathbb{Q} , the order of a finite group G by |G|, and the norm (resp. the relative norm with respect to K/k) of an ideal \mathfrak{a} by $N(\mathfrak{a})$ (resp. $N_{K/k}(\mathfrak{a})$). The notation [X:Y] means either the index of a subgroup Y of a group X, or the degree of a finite extension X of a field Y.

An algebraic number field always means an algebraic number field of finite degree. Let K, k be algebraic number fields such that $K \supset k$. Then the minimal algebraic number field \overline{K} such that (i) \overline{K}/k is normal, (ii) K is contained in \overline{K} (in other words, the composition of all the conjugate fields of K over K), is called the Galois closure of K/k. If $\overline{\Psi}$ is a prime ideal in \overline{K} , the i-th ramification group V_i of $\overline{\Psi}$ with respect to \overline{K}/k is defined by

$$V_i = \{v \in \mathbb{Z}, \ \alpha^v \equiv \alpha \pmod{\bar{\mathbb{P}}^{i+1}} \}$$
 for every integer α of $\bar{K}\}$,

where Z is the decomposition group of $\bar{\mathfrak{P}}$ with respect to \bar{K}/k , $i \geq 0$. If M is a subset of a group G, the group

$$\{g \in G, gm = mg \text{ for every } m \in M\}$$

is called the centralizer of M in G.

2. General preliminaries

Lemma 1. Let K, k be algebraic number fields such that $K \supset k$ and let \overline{K} be the Galois closure of K/k. Let $\mathfrak p$ be a prime ideal in k and let $\mathfrak P_1, \ldots, \mathfrak P_s$ be distinct prime ideals in K such that

$$\mathfrak{p}=\mathfrak{P}_1^{e_1}\ldots\mathfrak{P}_s^{e_s},\,N_{K/k}(\mathfrak{P}_i)=\mathfrak{p}^{f_i}.$$

Further let

p: the prime number divisible by p,

 $\bar{\mathfrak{P}}$: a prime ideal in \bar{K} which divides \mathfrak{p} ,

G: the Galois group of \bar{K}/k ,

H: the Galois group of \bar{K}/K ,

Z: the decomposition group of $\bar{\mathfrak{P}}$ with respect to \bar{K}/k ,

T: the inertia group of $\bar{\mathfrak{P}}$ w. r. to \bar{K}/k ,

V: the first ramification group of $\bar{\Psi}$ w. r. to \bar{K}/k ,

C(T): the centralizer of T in Z,

C(V): the centralizer of V in T,

Aut(T): the group of automorphisms of T,

Aut(V): the group of automorphisms of V,

E = |T|: the ramification index of \mathfrak{p} w. r. to \overline{K}/k ,

F = |Z/T|: the relative degree of \mathfrak{p} w. r. to \bar{K}/k ,

a: the least common multiple of e_1, \ldots, e_s ,

b: the least common multiple of f_1, \ldots, f_s ,

a': the least common multiple of the $\frac{e_i}{p^{(e_i)_p}}$, $1 \le i \le s$.

Then:

- (a) C(V) is a normal subgroup of T, and T/C(V) is isomorphic to a subgroup of Aut(V).
- (b) C(T) is a normal subgroup of Z, and Z/C(T) is isomorphic to a subgroup of Aut(T).
- (c) If $t \in C(V)$, $t^{a'} \in V$.
- (d) [T:V] = a'm', where m' is an integer which divides |Aut(V)|.
- (e) If $z \in C(T)$, $z^{bE} = 1$.
- (f) F = bm, where m is an integer which divides E|Aut(T)|.
- (g) If $p \nmid a$, then E = a, F = bm, $m \mid a \varphi(a)$, where $\varphi(a)$ is the number of rational integers x such that $0 < x \le a$, (x, a) = 1.
- (h) If p is unramified in K/k, F = b.

(i) If
$$p > \frac{[K:k]}{2}$$
, $p-1$ is divisible by the integer $\frac{E}{a}$.

Proof. For every $t \in T$, $v \to t^{-1}vt$ is an automorphism of V, since V is normal in T. This defines a homomorphism of T into Aut(V) with kernel C(V). Thus we obtain (a). Similarly, since T is normal in Z, we obtain (b).

For any $g \in G$, $(T \cap gHg^{-1})/(V \cap gHg^{-1})$ is contained (canonically) in the cyclic group T/V. If $\mathfrak{P}^g | \mathfrak{P}_i$,

$$[T/V:(T \cap gHg^{-1})/(V \cap gHg^{-1})] = \frac{[T:T \cap gHg^{-1}]}{[V:V \cap gHg^{-1}]} \\
 = \frac{[g^{-1}Tg:g^{-1}Tg \cap H]}{[g^{-1}Vg:g^{-1}Vg \cap H]} = \frac{e_i}{p^{(e_i)_p}}.$$

Hence, if $t \in T$, $t^{a'} = t_0 v$, where $t_0 \in T \cap gHg^{-1}$, $v \in V$. Now suppose that $t \in C(V)$. Then, since $v^P = 1$, where $P = p^{E_P}$, we have

$$t^{a'P} = (t^{a'}v^{-1})^P = t_0^P \in gHg^{-1}.$$

Now \bar{K} is the Galois closure of K/k, so that

$$\bigcap_{g \in G} gHg^{-1} = \{1\}.$$

Hence $t^{a'P} = 1$. Since [T: V] is prime to p, we obtain (c). Since [T: V] is divisible by $\frac{e_i}{n^{(e_i)_p}}$ for every i, [T: V] is divisible by a', i.e.

$$[T:V] = a'm', m' \in \mathbb{Z}.$$

Let $t_1 V(t_1 \in T)$ be a generator of the cyclic group T/V. Then it follows from (a) and (c) that $t_1 |Aut(V)|a' \in V$,

which proves (d).

For any $g \in G$, $(Z \cap gHg^{-1})/(T \cap gHg^{-1})$ is contained (canonically) in the cyclic group Z/T, and

$$[Z/T:(Z \cap gHg^{-1})/(T \cap gHg^{-1})] = \frac{[Z:Z \cap gHg^{-1}]}{[T:T \cap gHg^{-1}]} = f_i$$

for a certain i. If $z \in C(T)$, $z^b = z_0 t$, where $z_0 \in Z \cap gHg^{-1}$, $t \in T$. Hence

$$z^{bE} = (z^b t^{-1})^E \in gHg^{-1}$$
.

which proves (e). Since F is divisible by f_i for every i, F is divisible by b, i.e.

$$F = bm, m \in \mathbb{Z}$$
.

Let $z_1 T(z_1 \in \mathbb{Z})$ be a generator of the cyclic group \mathbb{Z}/T . Then it follows from (b) and (e) that $z_1^{|Aut(T)|bE} = 1$,

which proves (f).

For each $g \in G$, we have

$$[V: V \cap gHg^{-1}] = [g^{-1}Vg: g^{-1}Vg \cap H] = p^{(e_i)p}$$

for a certain i. If $p \nmid a$, $[V: V \cap gHg^{-1}] = 1$, i.e. V is contained in gHg^{-1} for every $g \in G$.

This implies $V = \{1\}$. From (d) and (f), we obtain (g) and (h).

The assertion (i) is obvious if $p \nmid a$. If $p \mid a$, then $E_p = 1$, since $[\bar{K}:k] \mid [K:k]!$. Hence V is a cyclic group of order p and so |Aut(V)| = p - 1. Since $e_i = p$ for a certain i, we have a = pa'. Now the result follows immediately from (d). This completes the proof.

Lemma 2. Let K be an algebraic number field, \bar{K} the Galois closure of K/\mathbb{Q} , \bar{d} the discriminant of \bar{K} , and $N = [\bar{K}:\mathbb{Q}]$. Let p be a prime number and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ be distinct prime ideals in K such that

$$p = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_s^{e_s}$$
.

If $p \nmid e_i$ for every i, then

$$\bar{d}_p = N\left(1 - \frac{1}{a}\right),\,$$

where a is the least common multiple of e_1, \ldots, e_s .

Proof. It follows from Lemma 1, (g) that the ramification index E of p with respect to \bar{K}/Q is equal to a. Hence we obtain

$$\bar{d}_p = \frac{N}{E} (E - 1) = N \left(1 - \frac{1}{a} \right),$$

since E is not divisible by p (see Hilbert [1], Satz 79).

Lemma 3. Let K be an algebraic number field of degree n, p a prime number with $p > \frac{n}{2}$, and $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ distinct prime ideals in K such that

$$p = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_s^{e_s}, \ N(\mathfrak{p}_i) = p^{f_i}.$$

Further let

 \bar{K} : the Galois closure of K/\mathbb{Q} , $N = [\bar{K}:\mathbb{Q}]$,

d: the discriminant of K, \bar{d} : the discriminant of \bar{K} ,

E: the ramification index of p with respect to \bar{K}/\mathbb{Q} ,

 $\bar{\mathfrak{p}}$: a prime ideal in \bar{K} which divides p,

 V_i ($i \ge 0$): the i-th ramification group of $\bar{\mathfrak{p}}$ with respect to \bar{K}/\mathbb{Q} ,

u: the minimum integer i such that $i \ge 0$, $V_{i+1} = \{1\}$,

a: the least common multiple of e_1, \ldots, e_s .

Then

$$d_{p} = n - \sum_{i=1}^{s} f_{i} + \frac{p(p-1)u}{E},$$

$$\bar{d}_{p} = \begin{cases} N\left(1 - \frac{1}{E}\right) = N\left(1 - \frac{1}{a}\right) & (p \nmid a) \\ \frac{N}{E} \left\{E - 1 + (p-1)u\right\} & (p \mid a). \end{cases}$$

Proof. Suppose that $p \nmid a$. Then u = 0 (Lemma 1, (g)). On the other hand (Hilbert [1], §12)

$$d_p = \sum_{i=1}^{s} (e_i - 1) f_i = n - \sum_{i=1}^{s} f_i.$$

Next suppose that p|a. Since $p > \frac{n}{2}$, and u is independent of the choice of \bar{p} , we may suppose that $e_1 = p$, $\bar{p}|p_1$. Let b be the different of K/\mathbb{Q} . For every i, suppose that b is divisible exactly by $p_i^{D(i)}$. Since N|n!, we have $E_p = 1$ and so $V_1 \cap H = \{1\}$, where H is the Galois group of \bar{K}/K . Hence

$$D(1) = (e_1 - 1) + \frac{p(p-1)u}{E},$$

and $D(i) = e_i - 1$ for every i > 1 (Hilbert [1], Satz 41, Satz 79 and §12). Since $f_1 = 1$, it follows that

$$d_p = \sum_{i=1}^{s} D(i) f_i = \sum_{i=1}^{s} (e_i - 1) f_i + \frac{p(p-1)u}{E}.$$

The last equality follows immediately from Hilbert [1], Satz 79.

Lemma 4. Let a(0), a(1), ..., a(n-1) be rational integers $(n \ge 1)$ and let p be a prime number such that

$$0 < a(0)_p \le a(i)_p \quad (0 \le i \le n-1), (a(0)_p, n) = 1.$$

Then

$$f(x) = x^n + \sum_{i=0}^{n-1} a(i) x^i$$

is irreducible over \mathbb{Q} , and $p = \mathfrak{p}^n$, \mathfrak{p} a prime ideal, in $\mathbb{Q}(\alpha)$, where α is an arbitrary root of f(x) = 0.

Proof. Let α be an arbitrary root of f(x) = 0, and \mathfrak{p} a prime ideal in $Q(\alpha)$ which divides p. Suppose that α (resp. p) is divisible exactly by \mathfrak{p}^m (resp. \mathfrak{p}^e) in $Q(\alpha)$. By hypothesis, m > 0. Since

$$-\alpha^n = \sum_{i=0}^{n-1} a(i) \alpha^i,$$

we have $nm = ea(0)_p$. Since $(a(0)_p, n) = 1$, it follows that

$$n \leq e \leq [Q(\alpha): Q] \leq n$$
.

This completes the proof.

3. Main results

Theorem 1. Let $n \ (n > 1)$, A, B be rational integers such that $f(x) = x^n + Ax + B$ is irreducible over \mathbb{Q} , $\alpha^{(1)}$, ..., $\alpha^{(n)}$ the roots of f(x) = 0, and \overline{d} the discriminant of

$$\bar{K} = Q(\alpha^{(1)}, \ldots, \alpha^{(n)}).$$

Let p be a prime number which satisfies none of the following conditions:

- (1)
- (2)
- (3)
- $\begin{array}{ll} p \mid n, & 0 < B_p \leq A_p, \\ p \mid n-1, & 0 < A_p < B_p, \\ p \mid n, & A_p > 0, & B_p = 0, \\ p \mid n-1, & A_p = 0, & B_p > 0, \\ A_p \geq n-1, & B_p \geq n. \end{array}$ (4)
- (5)

Let E be the ramification index of p with respect to \bar{K}/\mathbb{Q} , and let $N = [\bar{K}:\mathbb{Q}]$,

$$D = (-1)^{n-1} (n-1)^{n-1} A^n + n^n B^{n-1}.$$

Then

$$\bar{d}_p = N\left(1 - \frac{1}{E}\right).$$

Moreover, the value of E is given by the following table.

E
2
$\frac{n-1}{(n-1, A_p)}$
$\frac{n}{(n,B_p)}$
1

Remark. The condition (5) is not essential. Let r be the largest positive integer such that $r^{n-1}|A, r^n|B$. Put

$$A' = \frac{A}{r^{n-1}}, B' = \frac{B}{r^n}, \alpha' = \frac{\alpha^{(1)}}{r}.$$

Then α' is a root of

$$x^n + A'x + B' = 0,$$

and there is no prime number q which satisfies $A'_q \ge n - 1$, $B'_q \ge n$. Moreover

$$D' = (-1)^{n-1} (n-1)^{n-1} A'^{n} + n^{n} B'^{n-1} = \frac{D}{r^{n(n-1)}}.$$

If a prime number p does not satisfy the condition (5), then $A_p = A'_p$, $B_p = B'_p$ and $D_p = D'_p$. Therefore we can use Theorem 3 of our previous paper [2].

Proof. Suppose that $p|\bar{d}$. Then $A_p = B_p = 0$ or $A_p > 0$, $B_p > 0$, since p|D. The result follows from Lemma 1, (g), Lemma 2 and Komatsu [2], Theorem 2, the proof of Theorem 3.

Theorem 2. Let p be a prime number and let A, B be rational integers such that $f(x) = x^p + Ax + B$ is irreducible over Q. Let

 $\alpha^{(1)}, \ldots, \alpha^{(p)}$: the roots of f(x) = 0,

the discriminant of $K = \mathbb{Q}(\alpha^{(1)})$,

the discriminant of $\bar{K} = \mathbb{Q}(\alpha^{(1)}, \ldots, \alpha^{(p)}),$ \bar{d} :

the ramification index of p with respect to \bar{K}/\mathbb{Q} , E:

a prime ideal in \bar{K} which divides p, Ď:

 $V_i (i \ge 0)$: the i-th ramification group of \bar{p} with respect to \bar{K}/\mathbb{Q} ,

the minimum integer i such that $i \ge 0$, $V_{i+1} = \{1\}$; $N = [\bar{K}: \mathbb{Q}]$.

Suppose that p satisfies none of the following conditions:

(1)

 $\begin{aligned} &A_p = 1, \quad B_p = 0, \\ &A_p = B_p > 0, \quad (B_p, p - 1) \neq 1, \\ &A_p \ge p - 1, \quad B_p \ge p. \end{aligned}$ **(2)**

(3)

Then the values of d_p , E, u and \bar{d}_p are given by the following table.

p	d_p	E	и	$ar{d}_p$
$A_p > B_p > 0$	2p-1	p(p-1)	p	$\frac{N(2p^2-2p-1)}{p(p-1)}$
$A_p = B_p > 0$	$B_p + p - 1$	p(p-1)	B_p	$\frac{N}{p}\left(B_p+p-\frac{1}{p-1}\right)$
$0 < A_p < B_p$	$p-1-(p-1, A_p)$	$\frac{p-1}{(p-1,A_p)}$	0	$\frac{N(p-1-(p-1,A_p))}{p-1}$
$A_p > 0, B_p = 0,$ $(-B)^{p-1} \not\equiv 1 \pmod{p^2}$	p	p(p-1)	1	$\frac{N(p^2-2)}{p(p-1)}$
$A_p > 0, B_p = 0,$ $(-B)^{p-1} \equiv 1 \pmod{p^2}$	p-2	<i>p</i> – 1	0	$\frac{N(p-2)}{p-1}$
Otherwise	0	1	0	0

Proof. (See the remark of Theorem 1.) Suppose that $A_p > B_p > 0$. Since $(p, B_p) = 1$, it follows from [2], Theorem 3, (2) that

$$d_p = D_p - (p-1)(B_p - 1) = 2p - 1,$$

where $D=(-1)^{p-1}(p-1)^{p-1}A^p+p^pB^{p-1}$. On the other hand, from Lemma 3 and Lemma 4, we obtain

(*)
$$d_p = p - 1 + \frac{p(p-1)u}{E}.$$

Hence

$$\frac{p(p-1)u}{E}=p.$$

Now p-1 is divisible by $\frac{E}{p}$ (Lemma 1, (i)). Hence

$$\frac{E}{p} = p - 1, \quad u = p.$$

From Lemma 3 we obtain

$$\bar{d}_p = \frac{N(2p^2 - 2p - 1)}{p(p-1)}$$
.

Next, suppose that $A_p = B_p > 0$. Since $D_p = pB_p$, it follows from [2], Theorem 3, (2) that

$$d_p = pB_p - (p-1)(B_p - 1) = B_p + p - 1.$$

From (*) we obtain

$$B_p = \frac{p(p-1)u}{F}.$$

Now $(B_p, p-1)=1$ by hypothesis, and p-1 is divisible by $\frac{E}{p}$ (Lemma 1, (i)). Hence

$$\frac{E}{p} = p - 1, u = B_p, \bar{d}_p = \frac{N}{p} \left(B_p + p - \frac{1}{p - 1} \right).$$

Now suppose that $A_p > 0$, $B_p = 0$. By hypothesis, $A_p > 1$. If $(-B)^{p-1} \not\equiv 1 \pmod{p^2}$, then $p = p^p$ in K, $d_p = D_p = p$ ([2], Theorem 5 and its proof). From (*), Lemma 1, (i) and Lemma 3, we obtain

$$\frac{E}{p} = p - 1, u = 1, \bar{d}_p = \frac{N(p^2 - 2)}{p(p - 1)}.$$

Now suppose that $(-B)^{p-1} \equiv 1 \pmod{p^2}$. Let $\alpha = \alpha^{(1)}$ and let α denote the ideal in K generated by p and $-B - \alpha$:

$$a = (p, -B - \alpha).$$

Then \mathfrak{a} is divisible by every prime factor of p, $d_p = p - 2$, $N(\mathfrak{a}) = p^2$ and $p = \prod \mathfrak{p}_i^{e_i}$, $N(\mathfrak{p}_i) = p^{f_i}$, $\sum f_i = 2$ ([2], Theorem 5 and its proof). If p = 2, then $d_p = 0$, E = 1, u = 0, $d_p = 0$. If $p \neq 2$, \mathfrak{a} cannot be a prime ideal or the square of a prime ideal. Hence $\mathfrak{a} = \mathfrak{p}_1 \mathfrak{p}_2$,

 $\mathfrak{p}_1 \neq \mathfrak{p}_2$, $p = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2}$, $e_1 > e_2$. Since \mathfrak{a}^{e_1} is divisible by p, $\frac{(-B-\alpha)^{e_1}}{p}$ is an integer of K.

Hence $e_1 \ge p-1$ ([2], Theorem 5, (2). Note that $r_p=1$). Now the result follows from Lemma 1, (g), Lemma 2, Theorem 1 and [2], Theorem 3, (4).

Theorem 3. Let p be a prime number and let A, B be rational integers such that $f(x) = x^{p+1} + Ax + B$ is irreducible over \mathbb{Q} . Let

 $\alpha^{(1)}, \ldots, \alpha^{(p+1)}$: the roots of f(x) = 0,

d: the discriminant of $K = \mathbb{Q}(\alpha^{(1)})$,

 \bar{d} : the discriminant of $\bar{K} = \mathbb{Q}(\alpha^{(1)}, \ldots, \alpha^{(p+1)})$,

E: the ramification index of p with respect to \bar{K}/\mathbb{Q} ,

 $\bar{\mathfrak{p}}$: a prime ideal in \bar{K} which divides p,

 V_i $(i \ge 0)$: the i-th ramification group of \bar{p} with respect to \bar{K}/\mathbb{Q} ,

u: the minimum integer i such that $i \ge 0$, $V_{i+1} = \{1\}$; $N = [\bar{K}: \mathbb{Q}]$.

Suppose that p satisfies none of the following conditions:

$$(1) A_n = 0, B_n = 1,$$

(1)
$$A_p = 0, B_p = 1,$$

(2) $0 < A_p = B_p - 1, (p - A_p, p - 1) \neq 1,$
(3) $A_p \ge p, B_p \ge p + 1.$

$$(3) A_{p} \geq p, \quad B_{p} \geq p+1.$$

Then the values of d_p , E, u and \overline{d}_p are given by the following table.

р	d_p	E	и	$ar{d}_p$
$A_p \ge B_p > 0$	$p+1-(p+1,B_p)$	$\frac{p+1}{(p+1,B_p)}$	0	$\frac{N(p+1-(p+1, B_p))}{p+1}$
$0 < A_p < B_p - 1$	2 <i>p</i> – 1	p(p-1)	р	$\frac{N(2p^2-2p-1)}{p(p-1)}$
$0 < A_p = B_p - 1$	$2p-1-A_p$	p(p-1)	$p-A_p$	$\frac{N}{p}\left(2p-A_p-\frac{1}{p-1}\right)$
$A_p = 0, B_p > 0,$ $(-A)^{p-1} \not\equiv 1 \pmod{p^2}$	p	p(p-1)	1	$\frac{N(p^2-2)}{p(p-1)}$
$A_p = 0, B_p > 0,$ $(-A)^{p-1} \equiv 1 \pmod{p^2}$	p - 2	<i>p</i> – 1	0	$\frac{N(p-2)}{p-1}$
Otherwise	0	1	0	0

Proof. (See the remark of Theorem 1.) Suppose that $0 < A_p < B_p - 1$. Then

$$d_p = D_p - (p+1) A_p + (p-1) = 2p-1,$$

where $D = (-1)^p p^p A^{p+1} + (p+1)^{p+1} B^p$ ([2], Theorem 3, (5)). Since $p = q p^p$ ($p \neq q$) in K ([2], the proof of Theorem 3), it follows from Lemma 3 that

(*)
$$d_p = (p-1) + \frac{p(p-1)u}{F}.$$

Now p-1 is divisible by $\frac{E}{p}$ (Lemma 1, (i)). Hence

$$\frac{E}{p} = p - 1, u = p, \bar{d}_p = \frac{N(2p^2 - 2p - 1)}{p(p - 1)}.$$

Next, suppose that $0 < A_p = B_p - 1$. Since $D_p = pB_p$, it follows from [2], Theorem 3, (5) that

$$d_p = pB_p - (p+1)A_p + (p-1) = p - A_p + (p-1).$$

From (*) we obtain

$$p-A_p=\frac{p(p-1)u}{F}.$$

By hypothesis, $(p - A_p, p - 1) = 1$. Since p - 1 is divisible by $\frac{E}{p}$ (Lemma 1, (i)), it follows that

$$\frac{E}{p} = p - 1, u = p - A_p, \bar{d}_p = \frac{N}{p} \left(2p - A_p - \frac{1}{p - 1} \right).$$

Now suppose that $A_p = 0$, $B_p > 0$. By hypothesis, $B_p > 1$. Let $\alpha = \alpha^{(1)}$ and let q denote the prime ideal in K generated by p and $-\alpha$:

$$q = (p, -\alpha).$$

If $(-A)^{p-1} \not\equiv 1 \pmod{p^2}$, then $p = q p^p (p \neq q)$ in K, $d_p = D_p = p$ (see [2], Theorem 6 and its proof). From (*), Lemma 1, (i) and Lemma 3, we obtain

$$\frac{E}{p} = p - 1, u = 1, \bar{d}_p = \frac{N(p^2 - 2)}{p(p - 1)}.$$

Now suppose that $(-A)^{p-1} \equiv 1 \pmod{p^2}$. Let α denote the ideal in K generated by p and $-A - \alpha$:

$$a = (p, -A - \alpha).$$

Then qa is divisible by every prime factor of p, $d_p = p - 2$, $N(a) = p^2$ and $p = q \prod p_i^{e_i}$, $N(p_i) = p^{f_i}$, $\sum f_i = 2$ ([2], Theorem 6 and its proof). If p = 2, then $d_p = 0$, E = 1, u = 0, $d_p = 0$. If $p \neq 2$, a cannot be a prime ideal or the square of a prime ideal, since N(q) = p.

Hence $a = p_1 p_2$, $p_1 \neq p_2$, $p = q p_1^{e_1} p_2^{e_2}$, $e_1 > e_2$. Since $q a^{e_1}$ is divisible by p, $\frac{\alpha (A + \alpha)^{e_1}}{p}$ is an integer of K. Hence $e_1 \geq p-1$ ([2], Theorem 6, (2). Note that $r_p = 1$). Now the result follows from Lemma 1, (g), Lemma 2, Theorem 1 and [2], Theorem 3, (1).

4. Further application of Lemma 1

In this section we study an algebraic number field K of prime degree such that every prime ideal is unramified in \bar{K}/K .

Theorem 4. Let K be an algebraic number field of prime degree l, \bar{K} the Galois closure of K/\mathbb{Q} , G the Galois group of \bar{K}/\mathbb{Q} , and d the discriminant of K.

- (1) If every prime ideal is unramified in \bar{K}/K , G is a simple group.
- (2) If (l, d) = 1 and if every prime ideal in K has ramification index 1 or l with respect to K/\mathbb{Q} , then every prime ideal is unramified in \bar{K}/K .

Proof. Suppose that every prime ideal is unramified in \bar{K}/K . If p is a prime factor of d, then

$$p = p^l$$
, p a prime ideal

in K. Let $N \neq G$ be a normal subgroup of G, F its fixed field, and H the Galois group of \overline{K}/K . Let p_0 be a prime factor of the discriminant of F. Then the ramification index of p_0 with respect to F/Q is equal to l, since $p_0|d$. Hence [G:N] = [F:Q] is divisible by l. Since [G:H] = l is a prime number, we have

$$HN = G$$
 or $HN = H$.

On the other hand, since $|G|_l = 1$, we obtain $|H|_l = |N|_l = 0$. Now

$$HN/N \cong H/H \cap N$$
.

Hence HN = H, i.e. $N \subset H$. Since \overline{K} is the Galois closure of K/\mathbb{Q} , we obtain $N = \{1\}$. Therefore G is a simple group.

The assertion (2) follows from Lemma 1, (g).

Theorem 5. Let l be a prime number such that $l \equiv 1 \pmod{8}$ and let $A \neq 0$ be a rational integer. Then there exists an algebraic number field K of degree l with the following properties.

- (1) The discriminant d of K is prime to A.
- (2) Every prime ideal is unramified in \bar{K}/K , where \bar{K} is the Galois closure of K/\mathbb{Q} .
- (3) The Galois group of \bar{K}/\mathbb{Q} is a non-cyclic simple group.

Proof. For any prime factor p of l-1 and any N>0, the congruence

$$x^2 \equiv l^l \pmod{p^N}$$

is solvable. Hence there exist integers x_1, y_1 such that

$$x_1^2 - l^l = y_1 (l-1)^{l-1}, (x_1, l) = 1.$$

Put

$$(y_1, A) = p_1^{e_1} \dots p_m^{e_m}$$

Then, for each i, there exists an integer t_i such that

$$t_i \not\equiv 0, x_1 + t_i \frac{l(l-1)^{l-1}}{4} \prod_{\substack{p \mid A, \\ p \not\neq y_1}} p \not\equiv 0 \pmod{p_i}.$$

In fact, if $p_i|(l-1)$, we can take $t_i = 1$. If $p_i \not \setminus (l-1)$, such a t_i always exists since $p_i \neq 2$, $p_i \not \setminus l(l-1)^{l-1} \prod p$. Let t be an integer such that

$$t \equiv t_i \pmod{p_i}$$

for every i. Put

$$x_2 = x_1 + \frac{tl(l-1)^{l-1} M}{2},$$

$$y_2 = y_1 + tlM\left(x_1 + \frac{tl(l-1)^{l-1} M}{4}\right),$$

where

$$M = \prod_{\substack{p \mid A, \\ p \nmid y_1}} p.$$

Then

$$x_2^2 - l^l = (l-1)^{l-1} y_2, (x_2, l) = 1, (y_2, lA) = 1.$$

This implies that

$$\{(x, y) \in \mathbb{Z} \times \mathbb{Z}, x^2 - l^l = (l-1)^{l-1} y, (y, lA) = 1\}$$

is an infinite set. On the other hand,

$$\{(x, r) \in \mathbb{Z} \times \mathbb{Z}, x^2 - l^l = (l-1)^{l-1} r^l\}$$

is a finite set (see, for example, Mordell [3], p. 265). Hence there exist integers a, b and a prime number p such that

$$a^2 - l^l = (l-1)^{l-1} b, (b, lA) = 1, b_n \not\equiv 0 \pmod{l}$$
.

Now $f(x) = x^l + bx + b$ is irreducible (Lemma 4). Let α be a root of f(x) = 0, and $K = \mathbb{Q}(\alpha)$. Then ([2], Theorem 2)

$$D = N(f'(\alpha)) = b^{l-1} a^2$$
.

If q is a prime factor of the discriminant d of K, then $q \mid b$ ([2], Theorem 2. Note that D_q is even),

and $b_q \not\equiv 0 \pmod{l}$. In fact, if $b_q = ls$, $s \in \mathbb{Z}$, then $\frac{\alpha}{q^s}$ is a root of

$$x^{l} + \left(\frac{b}{q^{(l-1)s}}\right)x + \left(\frac{b}{q^{b_q}}\right) = 0$$

and so $q \nmid d$ since $q \neq l$. Hence $b_q \not\equiv 0 \pmod{l}$ and so

$$q = q^l$$
, q a prime ideal

in K (Lemma 4). It is easily seen that d is prime to lA. Finally, K is not totally real, since

$$f'(x) = lx^{l-1} + b$$

has imaginary roots. By Theorem 4, we see that K satisfies the conditions (2) and (3).

Remark. Theorem 4 implies that if K is an algebraic number field of prime degree l with discriminant

$$d=f^{l-1}$$
.

where f is a rational integer whose prime factors are all greater than l, then the Galois group G of \overline{K}/\mathbb{Q} is a simple group, i.e. G is a cyclic group of order l (so that $\overline{K} = K$) or a non-solvable simple group. By Theorem 5 we see that the latter case may happen (cf. Reichardt and Wegner [4], Satz 5).

References

- [1] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jber. dt. Math.-Verein. 4 (1897), 175—546 (Gesammelte Abhandlungen I, 2. Aufl.).
- [2] K. Komatsu, Integral bases in algebraic number fields, J. reine angew. Math. 278/279 (1975), 137-144.
- [3] L. J. Mordell, Diophantine equations, London-New York 1969.
- [4] H. Reichardt und U. Wegner, Arithmetische Charakterisierung von algebraisch auflösbaren Körpern und Gleichungen von Primzahlgrad, J. reine angew. Math. 178 (1937), 1—10.
- [5] K. Uchida, Unramified extensions of quadratic number fields. I, Tôhoku Math. Journ. 22 (1970), 138-141.
- [6] K. Uchida, Unramified extensions of quadratic number fields. II, Tôhoku Math. Journ. 22 (1970), 220-224.
- [7] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57—76.

Department of Mathematics, Waseda University, Nishi-Okubo 4-170, Shinjuku-ku, Tôkyô, Japan

Eingegangen 8. März 1974