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The classical local class field theory deals with abelian extensions of the ground
field with finite, quasi-finite, or algebraically closed residue field. In the case
of arbitrary perfect residue field it seems there no general theories covering
all types of extensions. Nevertheless, unramified, tamely ramified, and wildly
ramified class field theories can be established separately. The latter theory
([7]) is the most essential; it describes abelian totally ramified p-extensions.

In the first section of this paper an abstract p-class field theory is devel-
oped. Assume that the ground field K possesses a distinguished galois exten-
sion K/K with the galois group being an abelian pro- p-group (see C1, C2 in
Sect. 1). We study galois p-extensions L/F linearly disjoint with F/F,F = FK
(these extensions are said to be totally ramified). Abelian totally ramified ex-
tensions are described by means of a suitable modulation A4 (see (1.1)). One
can define a map 1 /F actin}g from the group Gal(L/F)~, of continuous Z,-
homomorphisms from Gal(F/F) to the discrete group Gal(L/F), to the quo-
tient group Ur/Np/rUL, where Ur is the kernel of the substantial epimorphism
v:Ap — Z. Tyr may be treated as a generalization of the Neukirch map ([19,
20]). One of the main condition on which the theory rests is Hilbert Satz 90
for Az (C3 in Sect. 1). At the same time several other reasonable properties,
such as Gal(L/F)-stable elements of 4; are in one-to-one correspondence with
elements of Ar, don’t hold in general. Thereby, first of all we consider ex-

tensions for which a weaker condition: v[(ASal(L/F)) = |L : F|Z holds for a

cyclic p-extension L/F. The class of such extensions (they are called marked)
is required to be sufficiently large (precise formulations in (1.5)). For a totally
ramified galois extension L/F, such that any its intermediate cyclic subexten-
sion L;/F, (F ¢ F\ C Ly C L) is marked, one can define a homomorphism
Y./ acting from Ur/NprUy to (Gal(L/F )®)~; the composition ¥y /Fo YyF is
the identity map. ¥,/ may be treated as a generalization of the Hazewinkel
homomorphism ([9]). Then the last condition C5 (the surjectivity of 1/ for
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a marked extension of degree p) permits one to show that 1 and ¥,/ are
inverse isomorphisms between (Gal(L/F)*)~ and Ur/NyrU;. The general case
of totally ramified galois extensions can be handled as well: the definition of
¥ F isn’t extendable to arbitrary extensions, but 17, remains an isomorphism.

It should be noted that the first section with the abstract theory was written
under the influence of Neukirch’s work [22].

The second section briefly introduces a complete discrete valuation field F
of rank n with perfect residue field & of positive characteristic p. Topologi-
cal Milnor K-groups K,,*(F) for such fields are defined and reviewed (for a
leisurely exposition see [3,4,6]). In (2.6) we verify that these groups coincide
with the quotient groups of K,,(F') modulo the subgroup of divisible elements.

The third section contains p-class field theory for a complete discrete valu-
ation field F of rank » with nonalgebraically- p-closed residue field k. Abelian
totally ramified (with respect to the discrete valuation of rank n) p-extensions
are described by means of the subgroup VK, (F) in K,”’(F) generated by prin-
cipal units with respect to the discrete valuation. Here we choose for n = 2
so-called @-extensions (a tower of subsequent Artin-Schreier extensions) as
marked extensions. We establish the reciprocity map

Yr: VK\P(F ) — Homg (Gal(F/F), Gal(F3/F))

where F/F is the maximal unramified with respect to the discrete valuation
of rank n subextension in F' ;b/F,F ;b is the maximal abelian p-extension of
F. The arguments of Sect. 1 and 3 provide, in particular, a new proof of the
p-part of the main results of [3-6].

We touch ramification theory for the fields in the fourth section applying
class field theory. A new Hasse-Herbrand function is defined and its properties
are listed. This abelian ramification theory explains some known phenomena
described in the works of Lomadze, Kato, and Hyodo ([18], [15-16], [10]) in
the case of the imperfect residue field.

Finally, in the fifth section we clarify the behavior of the reciprocity map
exposing the description of norm subgroups in VK,P(F) via the theory of
decomposable additive polynomials from Sect. 2 of [7].

Higher dimensional local class field theory (with finite residue field) from
different points of view has been treated by several authors, starting from
Parshin ([23, 26, 27]) and Kato ([11-13]), then by Deninger and Wingberg
([2]), Koya ([17]), and the author. We hope that the approach of this paper
could explain essence of the theory in a natural, explicit and simple way.

1 p-class field theory

1.1. Let XK be a field and G, = Gal(K,/K) be the galois group of the fixed
maximal separable p-extension K, of K. Fields considered later are subfields in
K, over K. Let OQ(G,) be the category, whose objects are finite subextensions
F/K in K,/K and the morphisms are the compositions of ¢:F — oF for
o € G, and the inclusion igr;: 0F — L.
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Let 4 be a G,-modulation (see S. 324 of [21], Sect. 4 of [22], Sect. 1 of
[4]), or in other words, a double (Mackey) functor

=(4",4.): 0(Gp) — 4b,

where A4* is a covariant functor, 4, is a contravariant functor, such that
A*(F) = A(F) = Af for all F € Q(G,), and such that:

(1) 6*0. = 0.0* =id for 0 € Gp,0* = A*(0),0. = A.(0);

(2) Nypoipr = |IL: F| for F,L € Q(G ), F C L and Nyr = A.(ipL), iFL =
A™(iFL)s

(3) for L,M € Q(G,) and any system R of representatives of Gal(K,/L) \
G,/Gal(K,/M) the formula

ik © Nvik = > NiaMjL © ioMjLom © 6
+€R

holds.
Further we will write ¢ instead of o*.

1.2. Assume that the field K possesses the following properties:
C 1. There exists a Gp-modulation A possessing a surjective homomorphism
ViAxk > Z

such that for some galois subextension K/K in K p/K with Gal(K/K) being
an abelian pro-p-group the formula v(NpxAr) = |FNK :K|Z holds for any
F e 0(Gp).

Let the cardinality of pro-p-basis of Gal(K/K) be equal to xk#0. If Gal(K/K)
has no nontrivial p- -torsion, then Gal(K/K) is noncanonically isomorphic to
[1.Z,. Put F = FK for K C F C K.

For a subextension F'/F in F/F put

Ap = lim 4F,

where F; runs all finite extensions of F" in F' ’ and the limit is taken with respect
to irF,. If L/F is finite and L’ NF = F’, then one can define ir//, NLI/FI as
mduced by ir 1, Ni,/F, where F; runs all finite extensions of F" in F'and L,
LF,. There is also igp : Ar — AF induced by ipr, for finite subextensmns

,/F in F'/F. If LJF is galois, then similarly one can define o : A, — A, for
o € Gal(L/F).

Put vp = (I/|F N K : K| o Npk, then vp(4r) = Z. Introduce the
homomorphism vr : Apr — Z as the natural extension of the homomorphisms
vr, : A, — Z for finite subextensions F,/F in F'/F.

An element 7p € Af is called prime if vr(np) = 1. Put

O = {O( € Ar : vp(2) 2 0} Ve =1+ ngOfp, Ur= O;.

An extension L/F, where L/F is finite, is called totally ramified (resp.
unramified) if LN F=F (resp. LC F).
The next property to be satisfied is
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C2. If LJF is finite unramified, then Ny ;rUp = Ur; and if L/F is finite, then
N[/,,:AI: = Apg.

1.3. For a p-group Gal(L/F) (of order of a power of p) let
Gal(L/F)™ = Homz,,(Gal(F/F), Gal(L/F))

denote the group of continuous homomorphisms of Z ,-module Gal(F/F)(a o
o = ¢ for a € Z,) to the discrete Z,-module Gal(L/F). If Gal(L/F)
has no nontrivial p-torsion, this group is isomorphic (noncanonically) with
®,Gal(L/F), where k was defined in (1.2).

Let L/F be a totally ramified galois extension, y € Gal(L/F)~. Denote by
X, the fixed field of all 7, € Gal(L/F) such that Tolp = @ and 14|, = x(@),
where ¢ runs Gal(F/F). Then X ,/F is a totally ramified extension. Note that
any totally ramified subextension X/F in L/F of the same degree as L/F may
be regarded as X,/F for a suitable y € Gal(L/F ).

If m, and m; are prime elements in Ay, and A;, then Ny 7, and Nyrm;
are prime elements in F. Put

Tyr(x) = Nx,rn, — Nyrmp  mod NprpUp .
Lemma. The map
Tyr: Gal(L/F)™ — Up/NyrUy
is well defined.

Proof. Ypr doesn’t depend on the choice of n;. Let M be the compositum
of Z, and L. Then M/Z, is unramified and any prime element in X, can be
written according to C2 as 7, + Nyyx,¢ for a suitable ¢ € Uy. Since Nyyre =
Nijr(NmjLe) € NypUp, we complete the proof. [J

1.4. Proposition. (1) Let LJF,L\/F\ be totally ramified galois extensions, and
FINF=FL NL=L. Then the diagram

7,
Gal(Li/F\)” == Ur/NrUL
N, F
Tur

Gal(L/F)~ —  Ur/NyrU

is commutative, where the left vertical homomorphism is induced by the nat-
ural restrictions Gal(L,/F,) — Gal(L/F) and Gal(F,/F,) = Gal(F/F).

(2) Let L/F be a totally ramified galois extension, and let ¢ be an auto-
morphism. Then the diagram

LF

.7
Gal(L/F) —  Up/NyrUy

a

~ Ya e
Gal(6L/oF)~ 5 U,r/Natjer Ut

is commutative, where (¢ y) (oo™ ") = ax(¢p)o~".
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Proof. (1) Let z; € Gal(L|/Fy)™ and y = x|, € Gal(L/F)". Put 2, = Z,.
Then %, = X, N L. Therefore, n = Ny x,mz, 18 @ prime element in 4y and

Nz, pm = Nr Ny r s,
(2) 1t follows from X,-, = ¢Z,. [J

1.5. Now we assume that the following property also holds:

C3. Let F C F' C F,L'/F'" be a cyclic totally ramified extension of degree
p, and o be a generator of Gal(L'/F"). Then the sequence

ag—1 Nprgr
Ay — Ay — Ap

Is exact.

It immediately follows from C2 and C3 that for a cyclic extension L/F with
a generator ¢ the sequence

A; ”—_I’A[ ~£iA,s—>()

1S exact.

In order to develop class field theory, one should add an additional cendition
C4. In general, the condition of C4 doesn’t hold for all cyclic totally ramified
extensions, see below (3.4). Nevertheless, for the theory it would be sufficient
if this condition holds for a subset of marked extensions.

Definition. Ler m be a set of totally ramified galois extensions L/F,F,
L € O(Gp), such that

21. If LJF € m, then L/M,M/F € wm for some proper cyclic subextension
MJF in LJF.

2. If LJF is a totally ramified galois extension, then there exists a totally
ramified extension Q/F, such that LNQ = F and any intermediate cyclic
subextension L,/Q, in LQ/Q(Q C Qi C Ly C LQ) belongs to m.

23. If LJF is a totally ramified galois extension of degree p, then there
exists a totally ramified galois extension E/F € m,L C E.

Extensions from m will be called marked.

Note that the set m depends on K, and it is more correctly to write mg. Now
the fourth condition may be stated as follows

C4. There exists a set m of marked extensions, such that for any cyclic
extension L/F € m with a generator ¢ € Gal(L/F)

o(x)=o for a€A; = vi(a)€|L:F|Z.

1.6. From now on we fix the set m from C4. Denote by myg the set of to-
tally ramified galois extensions L/F with the property: any intermediate cyclic
subextension L,/F, in L/F is marked. For L/F € mo we introduce the map
¥Y1r inverse to Typ. Put G = Gal(L/F). Let V(L|F) denote the subgroup in
U; generated by the elements o(a) — o with o € G,a € U;. For ¢ € G put
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(o) =oa(n;)—n; mod V(L|F),

where n; is a prime element in L (e.g., n; = ipgme)- In fact, ¢ induces the
homomorphism

c¢: Gal(L/F)™® — U;/V(LIF),
since o(n;) — n; € Uj.

Proposition. The sequence

> o~ b € Ner
1 — Gal(L/F)® — U;/V(LIF) — Uz — 0
is exact for L/F € my.

Proof. (c.f. Sect. 4 of [9] or Sect. 2 of [28]). First assume that L/F is cyclic
of degree p". Let ¢ be a generator of G. If c(¢™) € V(L|F) for some m, then
o(mn;)—mn; = o(e)—e for a suitable € € U;. Then a(mn;—¢) = mn;—¢€. By
C4 we deduce that p"|m and c is injective. Further, let N;zo = 0 for o € Uj.
Then, according to %, there is an element 8 € A; such that « = (¢ — 1)f. Let
B = an; + ¢ with € € U;. Therefore, a = c¢(6?)mod V(L|F).

Now let L/F be an arbitrary totally ramified galois extension, L/F € my.
Let M/F be a proper subextension in L/F, then M/F € mo. As N;,;U; = Uy
by €2, we get Ny ;(V(L|F)) = V(M|F). Argue by induction on |L : F|, one
can show the exactness of the sequence of Proposition in the term U;/V(L|F).
The injectivity of ¢ follows as well, since the commutator group Gal(L/F)
coincides with the intersection of all Gal(L/M) for cyclic extensions M/F. [J

Let L/F € mg. Let € € Ur. According to C2 there exists an element n € U,
such that Ny zn = ir/z¢. Let an extension of ¢ € Gal(F/F) on L be written by
the same notation. As N;z((¢ — 1)n) = 0, we deduce from Proposition that

(¢ — 1)n = (1 -0o)n; mod V(L|F)

with a suitable o € Gal(L/F)™®, where m; is a prime element in A;. It is
easy to verify that ¢ doesn’t depend on the choice of an extension of ¢ and
of n. Put y(¢) = of,. One immediately obtains that y(¢,¢p2) = 0102, ie.
¥ € (Gal(L/F)™®)~. Put ¥, /r(c) = 1.

Lemma. The map ¥;r : Ur/NyrU, — (Gal(L/F)*®)~ is a well-defined ho-
momorphism.

Proof. If € = ¢)¢,, then one can take n = n,#,. Therefore, ¢ = 0,0, and
Yyr(eie2) = Yyr(e)Pyr(e2) . O

1.7. Proposition. Let L/F be a totally ramified galois extension, L/F € m,.
Then

Yur o Tur : (Gal(L/F)™)™ — (Gal(L/F)*)

is the identity map.
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Proof. Let y € (Gal(L/F)®)~, and let m,,m; be prime elements in Ay ,A;.
Then

iy 7y =iyme+n with neU,
and Nj/pn = igp(Ns —Nyrmr). Let ¢ € Gal(F/F) and 1, be the element
of Gal(L/F) determined by y as above in (1.3). Then

(1 = )iy pm = (1o — 1)1 mod V(L|F).

Therefore, y = Yir(Yyry). O
Corollary. For L/F € mgy the homomorphism

¥ F : Ur/NyrUp — (Gal(L/F }*™®)~
is surjective; the map

Yyr : (Gal(L/F)™®)™ — Ur/NyrUL
is injective.
1.8. We are now in a position to indicate the last property to be satisfied.

C5. Let L/F € m be of degree p. Then the map Yy is surjective (or the
homomorphism ¥y ¢ is injective: if € € Up and Njjgn = igjpe for n € Ug with
(¢ — 1)y € V(L|F) for any ¢ € Gal(L/F), then € € NyrUy).
If k = 1, this property is equivalent to the first inequality |Ur : NyrUL| < p.
Theorem. Let L/F be a totally ramified galois extension. Then the map
Yyr : (Gal(L/F)*®)™ — Ur/NyrUr
is an isomorphism. The homomorphism
Wyr : Ur/NypUL — (Gal(L/F)™)”
defined for L/F € my is the inverse one.

Proof. First let L/F be a cyclic extension of degree p,L/F € m. Then it
follows from C5 and (1.7) that ¥ /r is an isomorphism and Y/ is an iso-
morphism as well.

Let L/F € mo, M/F be a galois subextension in L/F,L/M,M/F € m. By
Proposition (1.4) the following diagram is commutative:

1 — Gal(L/M)” — Gal(L/F)~ — GalM/F)~ — 1
T v Tir Yur

-
M

N ,
Uy/NumUr — Up/NypU. — Up/NygpUy  — 0

Hence Y is surjective. Proposition (1.7) implies now that ¥ - is injective.
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Now let L/F be a totally ramified galois extension, L/F ¢ mg. Then by 22
in (1.5) there exists a finite totally ramified extension Q/F such that LO/Q €
my,L N Q = F. By Proposition (1.4) we get the commutative diagram

Gal(LQ/0)™ "% Ug/NugipUsg
Nor
- Tir

Gal(L/F) —_— UF/NL/F UL
where the left vertical homomorphism is an isomorphism. It follows that 17 r
is a homomorphism. Note that if 77, is an isomorphismr and M/F is cyclic,
then the homomorphism Ny - in the first diagram is injective. Indeed, otherwise
for some x ¢ Ny Uy there exists an element y in Uy such that Nyyrz = 0 for
z = x — Npuyy. Then, by C3 we obtain z € (1 — 0)4), for a generator o of
Gal(M/F ). Proposition (1.4) shows that z € N;;,Uj, a contradiction.

Now we argue by induction on degree in order to show that Y7, is an
isomorphism for L/F € m. According to property 21 in (1.5) there exists
a cyclic subextension M/F of L/F such that L/M,M/F € m. Then Yy is
surjective and injective by the first commutative diagram.

If L/F is of degree p, then by 23 of (1.5) one deduces Yy, is a homo-
morphism, surjective and injective. The general case follows immediately by
induction arguements. [J

Corollary. Let L,/F,L;/F,L\Ly/F be abelian totally ramified extensions. Put
Ly =L\Ly,L4s = LyNL, Then

NppUr, = NprpUp, N NyrU, ,
NiyrUr, = NprUr, + NpyrUy, .

Moreover, NL,/FULI C NLz/FULg ifand only If Ll D Lz. NM/[:UM = NL/FUL
for the maximal abelian subextension M/F in L/F.

Proof. Put H; = Gal(L;/L,). Then

NyyrUp,, = Tigr(1) = T r((HiNH) ) = Yiyr(H )N Tye(Hy7)
NprUL, O N rUy, ,
NiyrUr, = Tiyr((HiH2)") = NyjpUp, + NiyrUs, -

If NL|/FUL1 C NLg/FULg’ then NL;,/FULI = ]VL}/FU[_3 and IL| ZF| = |L3 ZFl, i.e.,
L,cL,. 0O

2 Complete discrete valuation fields of rank n

In this section we briefly treat the class of fields for which the theory of Sect.
1 will be applied later (for the case of a finite residue field see [3-6]).

2.1. Let F be a field and
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Ve F* > (Z)'=1&.. 0L
n times

be a surjective valuation, where the additive group (Z)" is considered to be
lexicographically ordered, i.e., (my,...,m,) < (m),...,m}) in (Z)" if m, < m;
for the maximal i such that m;#m/. The ring of integers of vg, its maxi-
mal ideal and the group of units will be denoted as Up, #fp,r. We will
assume that the residue field Cr/.#F = k is a perfect field of characteristic
p > 0. The field F is said to be complete if it is complete with respect to
the main component o™ of v/ = (v"),...,v™) and the residue field F.» of F
with respect to the discrete valuation v") of rank 1 is complete. The elements
ty, ...,y of F such that

ve(t) = (0,...,1,...,0),

with 1 at the ith position, are called local parameters of F. Denote also 7' F =
V4 Mp, Uy, =1+ 0" 1] OF.

There is a chain of fields k, = F,k,_; = F,m,...,ko = k where k; is the
residue field with respect to the discrete valuation of rank 1 on k4.

If char(F) = p, then it follows from the general theory that F’ is isomorphic
(with respect to the discrete valuation of rank ) to the field of formal power
series k((X)))...((X;)) (c.f. section 5 Chapter II of [8]).

We are now going to introduce some special topology on F' that takes into
consideration the corresponding topology on F .. First assume that char(F) =
p. Let U,,, m € Z, be subgroups in k,—, which are neighborhoods of zero in
this topology (the topology coincides with the induced topology by the discrete
valuation of rank 1 if n = 1). Let U,, = k,— for all sufficiently large m. Put
U={>,czamtyam € U,}, where t, is a prime element of F with respect to
o™ All such subgroups U in F form a fundamental system of neighborhoods
of zero in the topology of F. The so-defined topology in the case of a finite
residue field was introduced by Parshin, see [26].

Now let char(F) = 0 and char(k,_,) = p > 0. According to the general
theory there is a subfield Fo in F which is a complete discrete valuation field
of rank n under the induced valuation, and p is a prime element in Fo with
respect to the first component of the discrete valuation of rank n on Fy (see
section 5 Chapter II of [8]). In this case F is a finite extension of Fy. One may
assume that the field of fractions Fgo of the Witt ring W (k) is contained in Fo.
Let U,,, m € Z, be subgroups in k,_; as above. Let U,, be subgroups in Fjy,
such that the coefficients from k of elements of U,, are replaced by coefficients
running the ring of integers of Foo. Then one can take U = {Emelamt,’,",a,,, IS
U »} as a fundamental system of neighborhoods of zero in the topology of Fj.
Define the topology on F as of a finite-dimensional vector space over Fo.

The multiplicative group F* is isomorphic to the product of the cyclic
subgroups (t;) generated by t,, where f,,...,t are local parameters in F, the
group of multiplicative representatives #* of k* in F, and the group 7 r.
If char(k,_,) = p, then introduce the topology on F~ as the product of the
topology on ¥ ¢ induced from F and the discrete topology on () X -+ %
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(1) x #*. If char(F) = char(k,+;) = 0 and char(k,) = p,m < n — 1, then
put #'r = 1+ t,+20F. Note that the group #r is uniquely divisible. The
field F is isomorphic to the field k1 ((Zm+1)) ... ((tn)), and k) 1s a complete
discrete valuation field of rank m+ 1 of the type considered above. We get the
isomorphism

F* > bky X W X (tyga) X ... X (ty) .

Introduce the topology on F* as the product of the trivial topology on # ',
the discrete topology on (f,42) X ... X (t,), and the above-defined topology
onky. .

The so-defined topology on F* doesn’t depend on the choice of local param-
eters and of imbeddings of the residue fields into the field. The multiplication
is sequentially continuous with respect to this topology.

Any element o € ¥ ¢ has precisely one expansion as the convergent product

e=e [] I - II a+06, im0,
>0ty >Li— () 00> (tyet2)
where ¢, is a divisible element in ¥'r,0,, , € Z=%*U{0} and [,,_(0) >

0,...,5,(0,...,0) > 0(m = n if char(k,_,) = p).

2.2. Let K (F) be the sth Milnor group of F. Introduce the topology on K (F')
as the strongest topology such that the map F* x ... x F* — K (F) and the
addition in K (F') are sequentially continuous. Then the intersection A (F) of
all neighborhoods of zero in K (F') is a subgroup.

Put

KP(F) = K(F)/A(F) .

Let UK (F),VKy(F),U;K,(F) denote the subgroups in K (F) generated by
Ur,?V F,U; respectively, where I = (iy,...,i,) € (Z)". Similarly the groups
UK P(F), VK (F), UK (F) are defined.

To study the structure of K°(F) one can apply generalizations of the
pairings in [26], or Sect. 2 of [4], and in Sect. 3 of [6], see (2.4)—(2.5).

2.3. Let F be the maximal abelian unramified p-extension of F* with respect
to the discrete valuation of rank n, i.e., F = F Qwq) W(k;‘,b). For FCF' CF
put

KP(F") = lim K\*P(F,)

where F,/F runs all finite extensions in F'/F and the limit is taken with respect
to iF,/F,, .

Let k = dimf, k/p(k) where @(x) = x? — x. Further we will assume that
k#+0. Then the Witt theory implies that Gal(F/F) is an abelian free pro-p-
group without nontrivial p-torsion, and there is a noncanonical isomorphism
Gal(F/F) ~ [[.Z,. The case k = 0 requires special considerations taking into
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account the pro-quasi-algebraic structure of VKP(F) over k as a generalization
of Serre’s theory ([28]) in the case of n = 1.

2.4. The first pairing we employ now in the case of char(F') = p is the Artin-
Schreier-Witt pairing. Let ay,...,, € F*, and let (fo,...,fBs) € Wi(F) be a
Witt vector. Let @ : Wy(F) — W,(F) be the operator defined as @(fo,....fs) =
(BE,...,BY) = (Bo..- -, Bs). For @ € Gal(F/F) put

(aly'"’aﬂs(ﬁ07"'7ﬁs)]3(()0) = (p(’y()s""‘}"s) - (}’09"'9"]‘.&') 9

where ©(70,...,7s) = (4o,...,%A) and the ith ghost component i) of
(Z0,..., %) is defined as resy(fo; 'doy A+ Ao, 'doy,). Then one can show
similarly to section 2 of [4] and (1.11) of [7] that ( -, - ]; defines the nonde-
generate pairing

(- 15 VKIP(F)/ p* x W(F)(9W(F)+ Wi(F))
— Homg,,(Gal(F/F), Wy(IF ) .

Applying this pairing in the same way as in [26] or section 2 of [4] one
can prove

Proposition. Let F be a complete discrete valuation field of raik n,
char(F) = p. Then any element o € VK, *(F) is uniquely expanded in the
convergent series Y croxig With cro € Zp,

xig={14+067..080,,....4,.},

125
where O belongs to the fixed basis of k over F,,I = (iy,...,i,) > 0, the

set {ji,....ju_1,j} coincides with the set {1,...,n}, where j is the minimal
integer such that pti;. In particular, Ky*(F) has no nontrivial p-torsion.

2.5. The second pairing is a generalization of the pairing introduced by Vos-
tokov in the case of a finite k (see [29] and Appendix B of [8]). Assume that
char(F) = 0,char(k,_,) = p, and a primitive p"th root of unity { is contained
in F. Let

=1 M0 (1+ 30, ath...1))

be an element of F*, where 0 € #*,0, .., belongs to the ring of integers (oo
of the field Foo (see (2.1)). Put

a(X) = X:" - .Xlal() (l + 291".....11/\,':" Xlll) :

Let z(X) = {(X),s(X) = z(X)? — 1. Let the operator 4 act on elements of
Cgo as the Frobenius automorphism Fr and on X; as raising to the pth power.
For « € F* put

B » ~ _‘6_01 e ol(a)

For ay,...,a,4) € F* put

B(aty, ..., 0n41) = 1(%ns1)Dust — 1(2)Dp + ...+ (=1)"I(21)Dy
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where D; is the determinant of the matrix

o) oo da(an)
Si(i1) - Oa(oh)
miv1) - Ma(%igr)
’71(°‘.n+|) o Na(%ngr)

Let u = u, denote the cyclic group generated by (. Define the map
I, : (F*)y"*' — Homg,(Gal(F/F), u)

as )
Fr(ala-'-,an+l)(¢) = Cll b

where 7y = (¢ — 1)0 and Fr(d) — 6 = resy @(oy, ..., otpy1)/s(X).
Then one can show similarly to section 3 of [3] and [28] that I', induces
the nondegenerate pairing (for p > 2)

T, : KWP(F)/p’ x F*[F*? — Homg,(Gal(F/F), 1) .

Applying this pairing in the same way as in section 3 of [3] (for »r = 1),
one can prove

Proposition. Let F' be a complete discrete valuation field of rank n,char(F) =
0,char(k"=') = p. Let p = 0.t +...£;'+... with 0, € R*. Then any element
« € VK P(F)/p is uniquely expanded as the convergent series S croxo +
2.C;ox;o where cig,ciy € Z/p and:

(1) xz0 = {1+ 06 .t tj,....t, ) for p t LO < I = (iy,...,0p) <
pler,...,en)/(p — 1), where 0 runs a fixed basis of R over Z/p,j, < ... <
Jn—1, the set {ji,...,ju—1,j} coincides with the set {1,...,n}, where j is the
minimal index such that i, is not divisible by p;

(2) x;p = {wo,ty,...st),_\} where wp = 1+ gezeolte=—1) | gperl(a=1) ¢
Ve, 1 S i < oo < jact £ 0y Yyeeorfn1nj} = {1,...,n}, and 0 runs
a T p-basis of k/(—6.)P/ P~V (k) if a primitive pth root of unity belongs to
F,; and wy = 1,c;y = 0 if a primitive pth root of unity doesn’t belong to F.

In the case of char(k"*1) = 0,char(k™)) = p,m < n one can deduce
similar assertions in the same way as in Sect. 5 of [6].

2.6. Finally, we concern with an explicit description of A (F).

Proposition. Let t,,...,t, be a local parameters of F. Let r = 1,m = 2,
and U be a neighborhood of 1 in 1+ t,0r with respect to the discrete
valuation (v\™,...,v™) of rank (n — m + 1) with k,_, being endowed with
the discrete topology if m < n+1, and U = {1} if m > n+ 1. Then for
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a € VF,0,...,0, € F* there exist elements f; € ¥ g, which sequentially
continuously depend on ay, ..., oy, such that

{otsess,0m) = S{Bsty,..ntj,_} mod p'VK,(F)+ {U} » K1 (F),

where J consists of ji,...,jm—1 and runs all (m — 1)-elements subsets of

{1,...,n}.

Proof. The proof can be carried out essentially in the same way as the proof
of Proposition (2.1) of [3], where in fact the case of char(F) = 0,m = n, has
been considered. [

Corollary. (1) The topology on VK,(F)/(p"VKu(F) + {U} + Ku-1(F)) in-
duced from (V'p),d = ("), by the surjective map (¥ 'r)' — VKu(F)/
(P VKn(F) + {U} « Ku_1(F)), is not stronger than induced from VK, (F),
(2) An(F) = ;5 [Ku(F) is a divisible group, and An(F) N0 VKu(F) =
Mror 7 VEn(F;
(3) There exists a writing of Proposition modulo p"VK,,(F) with B; se-
quentially continuously depending on oy, ..., 0y

Proof. (1) follows from the definition of the topology on K,(F).
(2) By (1) we obtain that A,(F) is contained in the intersection of all

P VK (F)+{U} - K1 (F) .

Evidently A,,(F) C VK,(F) and (5, [Kun(F) C A,(F). Hence we shall ver-
ify that for a fixed r the intersection of all p"VK,(F)+ {U} - Ku—i(F) coin-
cides with p'VK,(F). If char(F) = ... = char(k;) = 0,char(k;—1) = p, then
U,... CF? for all sufficiently large i;. Consequently, applying the border ho-
momorphism in K-theory, it remains to consider only the case of char(F) = p.
Then one can apply a differential symbol

dd[ dO(,,,

dp : Kn(F)/ pKn(F) — Q0 dp{ocl,...,ocm}za—l/\.../\ ==,

The Bloch-Kato-Gabber Theorem asserts, in particular, that dr is injective
(c.f. Sect. 2 of [1]). Note that Q7 is a finite-dimensional vector space over
F/FP, so the intersection of all neighborhoods of zero in €, with respect to
the induced from F topology, is trivial. The homomorphism dr is sequentially
continuous, hence its injectivity implies A,,(F) C pVK,(F). Moreover, An(F)
is a divisible group. For let x € A,(F),x = py with y € VK, (F). The ab-
sence of nontrivial p-torsion in K\P(F) for the fields of positive characteristic
(this can be shown in the same way as in Proposition (2.4)) implies now
y € A,(F).

Thus, A(F) = (,», P VKn(F) for char(F) = p. If char(F) = 0,
then the description of p-torsion in KnP(F), see (3.3), shows that A,(F) =
ﬂ,;, P'VK,(F) is divisible as well.

(3) follows from (2) and existence of the required writing in VKXP(F). O
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3 Multidimensional local p-class field theory

Let F be a complete discrete valuation field of rank »n with the residue field %.
Assume that & is a perfect field of characteristic p and x = dimp &/ (k)=+0.
In this section we will show that F and Ar = K, ”P(F) satisfy conditions Cl-
C5 of Sect. 1 in the case of so-called @-extensions (see (3.4)) regarded as
marked extensions. Thus, we establish class field theory for F. This theory
may be regarded as a generalization of the known results in the case of a
finite £ ([11-13], [23, 26, 27], [3-6]).

3.1. IE is well-known that Ar = K, P(F) is a G p-modulation. Cl is satisfied
with F/F defined in (2.3): for the homomorphism vr : Ar — Z one can take
the composition

KP(F) S K (ky_1) — ... — Ko(ko) ~ Z,

where 0 is the border homomorphism in K-theory, c.f. section 2 Chapter IX of
[8]. Then Ur of Sect. 1 coincides with UK, P(F) of Sect. 2. A prime element
nr of Ar can be written as {,,...,1,} +¢ with a suitable ¢ € UK, P(F), where
tn, ...t are local parameters of F'. The norm Ny for K-groups maps UK, ®(L)

onto UK, P(F) for L C F as it immediately follows.

3.2. In order to verify C3 we need the following description of the norm map
(analogously to Proposition 4.1 of [3] and Proposition 3.1 of [6]):

Proposition. Let L/F be a cyclic totally ramified extension of degree p,o a
generator of Gal(L/F). Let L = F(t;1) for some s,1 < s < n. Take local
parameters t,...,tsp = Nyfptsp,....ty in F and t,,...  ty,....,ty in L, and
assume that

alsy,

L1

=146t ...07...t) mod %, 4,.,

with 6y € R*.
Then for 0 € Uf
(1) if Giy-..rin) < (F1y.-s7n), then

Nyr (1406 ...tk ...8))
=140t P mod U piysr, iy
Q) if (ity...,in) = (F1,...,7n), then
Nyp(l+ 08y .t ...1))

=14 (07 — 000" ypr . tie " mod U piyir, i, F
(3) if (it,...,in) > 0, then

Nyr(1 + 0[:,"+r" el lﬁ'+r’ .. ’:|+I'| )

— =1 i,+pry i+, 1+ pry
= 1 = 0967 l"" Prn "'tsf ' "'tl p rnod %"H'P"H'l in+ proF -
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The surjectivity of the norm map Nz : K,*(L) — K, P(F) directly follows
from Proposition.

3.3. Using the bijectivity of the norm residue symbol in the case of char(F) =
0 which can be verified on the base of the arguements of section 6 in [3]
(employing Kato’s theorem on the residue norm symbol for multidimensional
complete fields, see Sect. 1.4 of [12]) one can deduce that the relation px =0
for x € VK,*(F) in the case of char(F) = 0,u, C F implies x = {{} - y for
a generator { of u, and some y € K,‘,(TI(F ). From this fact and the absence of
nontrivial p-torsion in the case of char(F) = p (see the end of Sect. 2 of [6])
one can prove, using explicit calculations in K,':fl(F )/p in the same way as
in the proof of Theorem (4.2) of [3] and Theorem (3.2) of [6], the following

assertion:

Theorem. Let L/F be a cyclic totally ramified extension of degree p, and let
o be a generator of Gal(L/F). Then the sequence

K(L) 75 KLy 5 KR

is exact.
3.4. At this point we note that C4 don’t hold in the general case.

Example. Let f be a finite extension of @, such that the group of all pth
roots of unity u, lies in f,and pp ¢ f1, where f is the unramified extension
of degree p over f. Let { be a primitive pth root of unity and @ be a p-
primary element in f(w € Uy and f = f({/w)). Then, according to well-
known properties of K, of a local field (see, e.g., Chapter IX of [8]) there
exist prime elements 7 and 7’ in f such that {o,n'} — {{,n} € pKy(f)
and {w, 7'} is a generator of Ky(f)/pKa(f). Since iy, {o, '} € pKy(f1),
one can deduce from Moore’s theorem (see, e.g., Sect. 4 Chapter IX of [8])
that i, {¢,n} is a divisible element in K(f1). Let 7 be a transcendental
clement over f and let F = f{{t}} be a complete discrete valuation field
of rank 2 with 7 as local parameters and with the residue field isomorphic
to the residue field of f (see Sect. 1 of [3]). Put L = F( Jt) . LJF is a
totally ramified cyclic extension of degree p and m, = {t,m} is a prime
element in K;(L). Then oi,;n; = iyym for a generator ¢ of Gal(L/F),
since iz, (on, — ng) = 0 in K;Op(Ll) for L} = L®; f1. We obtain also that
ipp{o,n'} =0 and {w,n'} € NyrKyP(L).

Thus, at the first rate we will treat some special class of extensions of
complete discrete valuation fields of rank n = 2 to which the theory of Sect. 1
can be applied. Thereby class field theory in the general case of totally ramified
p-extensions of the fields will be established.

Definition. A rotally ramified galois p-extension L/F will be called a (-
extension if one of the following cases occurs:

(1) char(F) = p,
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(2) char(F)=0and pu, ¢ F,
(3) char(F) = 0,p, C F and there is a chain of subfields L = Ls — L;—, —
...— Ly = F such that L, = L,_({/€;) for some e, € ¥'|,_,, 1 Si =

It is known that a @-extension L of F can be constructed as a tower of
Artin-Schreier extensions: L, = L,_;(o}) with suitable o, = @(o}) € L,_1,1 <
i < s (for the case of a finite residue field see Sect. 1 of [30]), that justifies the
notation. The following remark follows immediately: if (,...,7,) for a totally
ramified cyclic g-extension L/F of degree p is the same as in Proposition
(3.2), then p t ry (c.f. Corollary 2 of Proposition (4.1) of [3]).

3.5. Proposition. (-extensions satisfy properties 21-23 of (1.5) of marked
extensions.

Proof. The first property of marked extensions in (1.5) holds for @-extensions.
For the rest one may assume that char(F) = 0,u, C F. At first we verify
that for a finite extension L/F in which a local parameter #,r ramifies, there
exists an element ¢ € ¥ p such that I:(\ﬂ/t:,?)/L~ is of degree p. Indeed, if
I:(\r/ﬁ)#f,, then put ¢ = 1. Otherwise, let t,,...,t12 and t,£,..., ¢ F be local
parameters in L and F, and let vi(p) = (ey,...,e,). Let e; = p’"v(,f)(p),m = 1.
Pute=1 +20181 € ¥ r with 0; € &,

_ pen/(p=1) pesi1/[(p—1) pe/(p—1)—p"+1; is— i)
g =1y I i 1t A

1= (l'l,...,l's) _>__ 10,10 = (b|,...,bs_|,0),010='=0. Then

£ = <1 + 2911’3])
ptl

1/p,ef(p—1)  Lesi1/(p—1),e/(p—1)=p" " 45 i N
(1 - pIij’pJ 3 R S A ) t.:—I.L"'tl,L>
=P

modulo ¥2. If 6;%0 for some p t LI < (p~'bi,..., p~'bs—1, p" — b,
or m =1, then L(/e)+L. If 6; = 0 for all such /, and m > 1, then one can
continue transformations for the second factor.

In particular, if L/F is a totally ramified galois extension of degree p, and
L = F(y/f;F), then the same arguments show that there is Q = F(y/t.re) for
a suitable & € ¥'f, such that /7, ramifies in LQ/L. If ;g is a local parameter
of E = F({/¢), then LQ = E( \I/ts_f-tx}' ), hence LQ/E is a g-extension. Thus,
LQJF is a g-extension, so we have proved 23.

In order to prove 22 for g-extensions, it suffices to consider the case
when L/L, is a subextension of degree p in L/F and to prove that there exists
a finite totally ramified extension Q/F such that LO/L,Q is a ¢-extension and
LN Q =F. Let tnl,>--->hi 1, be local parameters in L, and let L = Li(y/t1,)-
We construct a tower of fields F = Qy — Q1 — ... — Qs = R, such that in
0,/Qi— only the local parameter t,r = tig,_, ramifies, and

€ Cri—1 €.l

tir =t tivo., - trg 0, with 0, € .0 € Vg,
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where

thr =81 G ...t7,0ip, with 6, € Z,p, € Vy, .

One can take Q;/Q,—, as subsequent extensions of the type considered at the
beginning of the proof, such that L\R/L, is of the same degree as R/F. We
deduce that for any 1 < i < s the element ¢z, t,.i_R1 belongs to ¥ ,r. If £y,
ramifies in LR/L|R, then take Q = R({/f;z€) with a suitable ¢ € ¥¢. Otherwise,
ts1, € (LiR)?, and if LR/L\R isn’t a g -extension, then LR = L \R({/ty 1,r) for
some s’ < s, and one may repeat the previous constructions for LR/LiR/R
instead of L/L,/F. Finally we obtain the desired extension Q/F. [

Note that the quotient group UK, (F)/VK,"(F)is isomorphic to (k*)", and
hence, is p-divisible. Thus, we get the map (according to section 1)

Tur : (Gal(L/F)™)™ — VK\P(F)/Nyr VK, (L) .
3.6. We verify C4 for gp-extensions.

Proposition. Let L/F be a tota11y~rqmiﬁed cyclic p-extension of degree p™,
and let o be a generator of Gal(L/F). Then ox = o for a € Ky*(L) implies
p"op(a).

Proof. Assume that L/F is of degree p. Let (ri,...,rs) be as in Proposition
(3.2). Then, as p t ry, Proposition (2.4) and Proposition (2.5) imply that on—n
belongs to Uy, . Kx*(L) and doesn’t belong to Uy 11..,KiP(L) for a prime
element 7 in K, (L). Therefore plv;(2).

Now let L/F be of degree p™. By the induction assumption, o = a p i+
e, where 7 is a prime element in K,(L),€ € UK,P(L). Then

a(tn —n) =0 mod V(L|F),

where 7 = ¢”"~". This means that a(tn — ) = (¢ — 1)y for some 7 € VK, (L).
Assume that p doesn’t divide a, then we may put a = 1.

Let M be the fixed field of 7, and let @1 be an element of Gal(L/L)
with the fixed field L'. L' is a complete discrete valuation field of rank n with
a pro- p-quasi-finite residue field k" such that k;"/k’ is a Z,-extension. Let M’

be the fixed field of M under the action of ¢. The completeness of L provides
the relation ¥; = ‘t’”z.""l (c.f. Lemma (1.4) of [7]). Then for a prime element

7 of KIP(L') there exist 1,0 € VKyP(L) such that
(te — D)igpm = (v = Dipjpn = (0 — )y=(l—-19), o6=(c—1).

Let 3’ be the fixed field of t@. Then Propositions (2.4) and (2.5) imply that
there is a prime element 7y in K, (') such that iy, ;m+0 = iy Ty + pv,v €
K, >P(L). Therefore, the element

X = iM’/M(NZ'/M'T[Z’ — NLI/MrT[) = NE/M(é —_ PV)
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belongs to (o — 1)VK,P(M )+ pK,*(M). Now we apply Propositions (2.4) and
(2.5) again in order to deduce that (as L'/M’ is a g-extension)

Nyipprmgr — Nppypem € Ny UK:,OP(L’) .
This means that iy, ;s — iy, ;(n + n) for a suitable n € UK,™(L') belongs
to the kernel of N;,;. By Theorem (3.3) we get (7 — Dy im € V(L|M) that

contradicts the assumption a = 1. [J

Now according to Sect. 1 we obtain the homomorphism
Wy 2 VKSP(F)/Nyp VKL (L) — (Gal(L/FY™®)

for an extension L/F € g, (any intermediate cyclic subextension in L/F is a
g-extension).

3.7. At last we verify C5.

Proposition. Let L/F be a totally ramified cyclic @-extension of degree p.
Then Yyr is surjective.

Proof. Let (r,...,r,) be as in (3.2). By employing Proposition (3.2) it suffices
to show that if

e= {14062 . .t2p...t0" t;,....5;,_,} mod NypVKIP(L)

with 8 ¢ 6] (k), where 6 is as in Proposition (3.2), then ¥ r(e)+1. In
terms of C5 we obtain that

n={14+0¢g. ... .0, ..t,_}+...,

where 67 — 9{,’"@ = 6. Now, if Y1 r(e) = 1, then the element (¢ — 1)y
belongs to Uy, 1. ., KaP(L) for any ¢ € Gal(L/F). This is impossible in view
of (2.4) and (2.5). Thus, ¥/ is injective. [J

3.8. According to Theorem (1.8) we obtain the following assertion:
Theorem. Let F be a complete discrete valuation field of rank n with a perfect

residue field k of characteristic p,x = dimg k/(k)#+0. Then for a totally
ramified galois extension L/F,L C F,, the map

Tur : (Gal(L/F)™)™ — VKP(F)/Nyr VKI®(L)
is an isomorphism,; and the map
Yyr o VKP(F)/Nyp VKP(L) — (Gal(L/F)™)~

is inverse if L/F € gp,.
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Remark 1. One can add to the functorial properties (1), (2) of Proposi-
tion (1.4) the following: Let L/F be a totally ramified galois extension and
MJF be its subextension. Then the diagram

(Gal(L/F)*®)~ &ia VK" (F)/Njr VK" (L)
Ver~

(Gal(L/MY®)™ T VK (M)Na VK (L)

is commutative, where Ver~ is induced by Ver : Gal(L/F)* — Gal(L/M )™.

Indeed, assume first that L/F € @q¢. Let ¢ = Nypn and (¢ — I)np = (1 -
g)n +y for a prime element 7 in K;*(L),a € Gal(L/F), y € V(L|F). Then
ol, = x@)x = Yyr(e). Let 1; € Gal(L/F) be a set of representatives of
Gal(L/F) over Gal(L/M). Then ipp€ = Npygm with np = Y tn and (¢ —
D =>(1 —o)un + Y 1,y. Let a1, = 17hi(0) with k(o) € Gal(L/M ). Now
we deduce

Y —o)yn = Yl -h(o)r=][[(1-h(o)n
= (1 —Ver(o))nr mod V(LIM).

Since Y 1,7 € V(L|M) we conclude that (¢ — 1), = (1 — Ver(c))n mod
V(L|M), as desired.
For arbitrary L/F one can apply 22 of (1.5).

Remark 2. Let #/F be any subextension of F,/F linearly disjoint with the
maximal unramified p-extension F“/F and such that #F" = F,. Passing
to the projective limit for TL_/} when L/F runs all finite galois subextensions
in Z/F we obtain the homomorphism VK, (F) — Homgz,(Gal(F/F),Gal(F /
F)®). It determines the reciprocity map

Yr : VK\P(F) — Homg, (Gal(F/F),Gal(F’/F)) ,

where F ;‘,"/F is the maximal abelian subextension in F,/F, and elements of the
right-hand group are continuous homomorphisms with respect to the discrete
topology on Gal(F;’,b/F). The kernel of ¥ coincides with the intersection

of all norm groups Ny/r VK, P(L) where L/F runs finite galois subextensions
in #JF.

Remark 3. Let f be the residue field of F with respect to the discrete valuation
v, then f is of rank (n — 1). Similarly with the proof of Theorem (5.3) of
(6] one can verify that the diagram

VKYP(F) ~5  Homg,(Gal(F/F), Gal(Fy/F))

VK (f) —% Homg,(Gal(F/F),Gal(F/F))

n—1
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is commutative, where the left homomorphism is induced by the border
homomorphism.

Let F’ be an intermediate complete field between F and F. Then the
diagram

VKSP(F) Y5 Homg,(Gal(F/F),Gal(F®/F))

|

t Ve ~ b
VK. P(F) 5 Homzp(Gal(F’/F' ), Gal(F’; /F"))
1S commutative.

Remark 4. One can show that if char(F) = p, then for « € VK, P(F),B €
W (F) and the pairing of (2.4)
(o, Bl(@) = Fr(a)(@)(7) — 7

where ¢ € Gal(F/F), and y is the root of the polynomial @(X) — f.
If char(F) = 0, then for o € VK,*(F), € F* and the pairing of (2.5)

I'(o B) (@) =y reXo=t

where ¢ € Gal(F/F) and 77 = B.

4 Notes on ramification

Let F be a complete discrete valuation field of rank »n as in Sect. 3. In this
section we touch abelian ramification groups via p-class field theory.

4.1. There is a filtration (depends on the choice of the valuation vy defined
in (2.1))

on VK,*(F). Using the pairings of (2.4) and (2.5) in the context of Proposition
(2.4) and Proposition (2.5), one can show that if char(¥) = p, then for / > 0

U[K:,OP(F)/U]+1K:,OP(F) ~k o

where 1 = (1,0,...,0). If char(F) = 0, then for / > 0 and E = (ey,...,e,) as
in (2.5) one can obtain that

UK (F) + pKP(F)/Upi K32 (F) + pKyP (F)

n

is equal to 0 if p|I,] < pE/(p—1)orl > pE/(p—1)orl = pE/(p-1) € (Z)"
and a primitive pth root of unity doesn’t belong to F; is isomorphic to k if
pt 11 < pE/(p— 1), is isomorphic to (k/@(k))" if I = pE/(p — 1) and a
primitive pth root of unity belongs to F.

Now let L/F be a totally ramified galois p-extension. The norm map
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Nyr : VKP(L) — VK'P(F)

can be described on the base of Proposition (3.2). However, the behavior of
Ny for n > 1 is more complicated than in the case of n =1, because the
norm map may act on different components of a symbol in Ky P(L).

Example. Let L/F be of degree p,n = 2. Let L = F(tyr). We take hr =
Nyrtrp and t; as local parameters of F, and t,; and f, as local parameters
of L. Then NL/F{I + IZLtl,t|} = {1 + tzj:'t‘p,t]} and NL/F{I + tzvptl,tz‘L} =
{1+ tarti, tar}, but vi(tarhy) < vi(tarty ), VE(tapt]) > ve(tart)-

4.2. Applying the construction of the reciprocity map of Sects. 1 and 3, one can
describe the image of U;K\*P(F) in (Gal(L/F)™)". Let m; be a prime element
in K;P(L). Assume first that L/F is an abelian totally ramified extension, L/F €
(0. Then
Y HUIKZP(F)) = {1 € Gal(L/F)™ :
iy (@) — 1) € (@ — DN LigpUiKn*(F) - for any ¢ € Gal(L/F)}.

If L/F ¢ ¢, then the description of the pre-image T, (UK, P (F)) follows
from the commutative diagrams in (1.8).

In the case of n = 1 it is well-known that (NLT/;;U,.F)“’*' for an integer
i > 0 can be replaced by Uy LV (L|F) and TL“/}.(U,,F) can be identified with
the ramification group Gal(L/F )u), where h = Y /r is the function defined as
the maximal integer j such that (in the case of an infinite residue field)

NyrU,p C Ui, & Uir NypUpnin C Uil p

(c.f. Sect. 3 Chapter III of [7]). Moreover, & can be extended to galois ex-
tensions and all real i = 0.

4.3. For o € VK, (L) put
wy(a) = min{/ : & € UK, (L)} .

Let L/F € ¢o. We will assume that the surjective discrete valuation of rank n
on F is induced by the surjective discrete valuation on L. Let

B = {wi(on, — my): 0 € Gal(L/F)},

where 7; is a prime element in K, (L).
Define the modified Hasse-Herbrand function h, = h,p/r : (Z)} — (Z)},
where (Z)" is the subset of indices I > 0 in (Z)", as

ho(I)= min {w;(x)€B:a€ (¢~ I)NL-_/;;iFV,Fu,K;on(F)}
9€Gal(L/F)
if the minimum exists, and A,(I) = +o0o otherwise. Then A,z /F is an increasing
function. This k, doesn’t coincide with the classical h. However, the equality
T&,L( U,r) = Gal(L/F )i, holds for any integer i > 0.1In faf:t, the function A,
reflects in the general case only properties of abelian extensions.
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The equality h,1/r = hpz/ar 0 hypyr holds for n =1 and doesn’t hold in the
general case.
For J € (Z), put

Gal(L/F); = {0 € Gal(L/F) : ony — m; € U;K}°P(L)} .

Then we deduce from (4.2) that Y, A(U;K:P(F)) C (Gal(L/F ), ,))~ for
an abelian totally ramified @-extension L/F. There are examples of abelian
extensions of degree p’ in the case of n > 1 such that C in the previous
relation can’t be replaced with = (see, e.g., [18]). This means that in the general
case the natural filtration on Gal(L/F) induced from the chosen filtration on
VK,"(F) doesn’t coincide with the induced filtration from VK, P(F) by the
reciprocity map.

Let L/F be a finite totally ramified p-extension, and M/F be a galois subex-
tension in L/F. Put G = Gal(L/F),H = Gal(L/M). Then

(G/H ),y 1) = Gy ryHIH 1 €(Z)) .

This equality may be treated as an analog of the Herbrand theorem.

Problem. To extend the function /, in a proper way on (R)].

5 Existence theorem

Let F' be as in section 3. Recall that an additive polynomial over k is called
k-decomposable if all its roots belong to k (see Sect. 2 of [7]).

5.1. A subgroup .4 in VK, ®(F) is called normic if

(1) A" is open;

(2) for any / > 0 there exists a polynomial f;(X) € Or[X] such that the
residue polynomial f ; € k[X] is nonzero k-decomposable and

{1+ f1(Or)tr ... YK P (F) C N

where f,,...,1 are local parameters of F,I = (iy,...,i,);
(3) for any / > 0 there exists a polynomial g;(X) € Cr[X] such that its
residue §; is nonzero k-decomposable, and

N N UKP(F) + Uy K(F)

= {1+ g/ (Cr)tyr ...t YK, P (F) + Ur KP(F)

and for almost all / the polynomial g;(X) is equal to X.
We will show that the class of normic subgroups coincides with the class
of norm groups Ny VK, (L) of totally ramified galois extensions L/F,L C F.

5.2. It follows from the definition that the notion of a normic subgroup doesn’t
depend on the choice of local parameters in F.
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Proposition. Let L/F be a totally ramified galois p-extension, L C F). Then
the group Ny rVKy*(L) is normic in VK, (F).

Proof. The first property for Ny/r VK, "(L) is evident. To verify the second and
third properties, one can proceed by induction on the degree of L/F. If L/F
is of degree p, then all follows from Proposition (3.2). In the general case let
MJF be a galois subextension in L/F of degree p. Let o be a generator of
Gal(M/F) and M = F(t;pr). Let

toag " \otopr = 1+ oty ...ty .. 8 mod Up4, .,
with 6y € #*. According to Proposition (3.2) the unique nontrivial polynomial
arose from the norm map Nuyyr is f2(X) = Hé’gg)(ﬁo_'X). Now let n; be a
prime element in K,*(L), and ¢ € Gal(L/F) be an extension of ¢ on L. Then

Npm(omg — mp) — {1 4 0ot ...t;"M...t'l",;,,,...,t,,,_l}

belongs to Uy, 41, KaP (M), where the set {ji,...,jn—1,5} coincides with the
set {1,...,n} and t,,...,Nyyrtsm, ..., 11 are local parameters of F. Therefore,
by the induction assumption,

Npp VKP(L) N UrKP(M) + Up K, P (M)
= {1+ fUOR) .. 0 YK (M) + Ur KyP(M)

where R = (ry,...,r), and 0y € f1(CF), f_l is k-decomposable. Thus, 0, €
7F1(k) and the polynomial f,o fi is nonzero k-decomposable. The second
property for Ny /mVK»P(L) can be verified now similarly to the proof of Propo-
sition 15 of [31]. O

5.3. Proposition. Let L/F be an abelian totally ramified extension, L C F,.
Let A be a normic subgroup in VK,*(F). Then NL‘/;.(UV) is a normic sub-
group in VK;P(L).

Proof. 1t suffices to verify the assertion for a cyclic totally ramified extension
L/F of degree p. Then the first and second properties of NL“/}(V»V') can be es-
tablished similarly with the proof of Lemma 5 in [31] employing Lemma (2.6)
of [7]. The third property of NL_,}(J") follows immediately from Proposition
(3.2) and Proposition (2.5), (2) of [7]. U

5.4. For a prime element 7 in K,"(F) let &, denote the set of totally ram-
ified abelian extensions L/F,L C Fp, such that = € NyrKyP(L). Then, for
L\/F,L,/F € &, one has LyNLy/F € &5, LiLy/F € &5 Indeed, let M = L, NL,
and NL]/Fnl = NL:/F“Z = n. Then NM/FS =0 for ¢ = NL]/M7I1 — NL:,/M7I2.
Now it follows from the first commutative diagram of Proposition (1.4) that
€ € Ny VK P(L). Therefore, there is a prime element my in KXP(M) such
that

Nyemy =7, T € NpyKyP(Ly) O N K (La) -
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Thus, it suffices to consider the case when L, "L, = F and L,/F,L,/F are
cyclic extensions of degree p. Assume that L;L,/F is not totally ramified. Then
there is an unramified cyclic extension E/F of degree p,E C L|L,. Let ¢, and
o, be elements of Gal(L,L,/F) such that ¢,|;,, and 05|, are trivial, and o],
and o|;, are generators of Gal(L,/F) and Gal(L,/F) respectively. One may
assume that £ is the fixed field of o3 = 0,05. Let © = Nprm = Nprm
for some € K,!,OP(L| ), M € K:,OP(Lz). Then NL]L:/’E(iL|,/L1L37r| — iLz/Llenz) = 0.
Applying Theorem (3.3) we obtain that iz, ;1,7 — ir,,,m = 03(7) — 3 for
some y € K,"(LiLy). Put B = ir,;1,,m + 7 — 01(y). Then o3(B) = B and
it =04+0 +...+ af_')[}. Therefore, v,1,(f) = 1. If L\ L,/E is a (-
extension, then according to Proposition (3.6) we obtain a contradiction. Other-
wise, Ly = F({/t;),L, = F({/t;w) for some local parameter #, of F and w = w,
as in Proposition (2.5). Then one can deduce equalities Ny /rVK,P(L;) =
NiyrVKRP(Ly) and Ny, pVKRP(Li) + Ny pVKP(Ly) = VKIP(F), a contra-
diction. Thus, L|L,/F is totally ramified.

Let a prime element 7’ in VK,(F) belong to Ny ;,/rKy*(L\L;). Then n’
belongs to Ny, /rKyP(L1) N Ny, rKx (L), hence by Corollary (1.8) ¢ =’ — =
lies in the group Ny, 1,/rVK,(LiL,). This means that L;L,/F € &,.

5.5. The following assertion can be verified similarly to the proof of Proposi-
tion (3.4) of [7].

Proposition. Let n be a prime element in K,*(F). Let A" be a normic sub-
group in VK, P(F). Then there is precisely one abelian totally ramified p-
extension L/F such that .V" = NypVK,®(L) and n € NypKyP(L).

As a corollary, we obtain

Existence Theorem.. There is an order reversing bijection between the lattice
of normic subgroups in VK, P(F) with respect to the intersection and sum
and the lattice of extensions L/F € &, with respect to the intersection and
composition:

.,V]_ = NL/FVK;OP(L) — L.

Finally, in the same way as in (3.4) of [7] one can show that for the
compositum F, of all fields L with L/F € &,

FaNF=F and FF=F%.
Problem. To find an explicit description of the extension F,/F as in the clas-
sical case Lubin-Tate formal groups provide.
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