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1 Introduction

A basic result in mathematical finance, sometimes called the fundamental
theorem of asset pricing (see Dybvig 1987 e.g.), is that for a stochastic process
(S:);<r., the existence of an equivalent martingale measure is essentially equiv-
alent to the absence of arbitrage opportunities. In finance the process (S;); g,
describes the random evolution of the discounted price of one or several
financial assets. The equivalence of no-arbitrage with the existence of an
equivalent probability martingale measure is at the basis of the entire theory
of ‘pricing by arbitrage’. Starting from the economically meaningful assump-
tion that S does not allow arbitrage profits (different variants of this concept
will be defined below), the theorem allows the probability P on the underlying
probability space (2, &, P) to be replaced by an equivalent measure Q such
that the process S becomes a martingale under the new measure. This makes it
possible to use the rich machinery of martingale theory. In particular the
problem of fair pricing of contingent claims is reduced to taking expected
values with respect to the measure Q. This method of pricing contingent
claims is known to actuaries since the introduction of actuarial skills, centu-
ries ago and known by the name of ‘equivalence principle’.

The theory of martingale representation allows to characterise those
assets that can be reproduced by buying and selling the basic assets. One
might get the impression that martingale theory and the general theory of
stochastic processes were tailor made for finance. (see Harrison and Pliska
(1981)).

The change of measure from P to Q can also be seen as a result of risk
aversion. By changing the physical probability measure from P to Q, one can
attribute more weight to unfavourable events and less weight to more favour-
able ones.

As an example that this technique has in fact a long history, we quote the
use of mortality tables in insurance. The actual mortality table is replaced by
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a table reflecting more mortality if a life insurance premium is calculated but is
replaced by a table reflecting a lower mortality rate if €.g. a lump sum buying
a pension is calculated. Changing probabilities is common practice in actuar-
ial sciences. It is therefore amazing to notice that today’s actuaries are
introducing these modern financial methods at such a slow pace.

The present paper focuses on the question: ‘What is the precise meaning of
the word essentially in the first paragraph of the paper? The question has
a twofold interest. From an economic point of view one wants to understand
the precise relation between concepts of no-arbitrage type and the existence of
an equivalent martingale measure in order to understand the exact limitations
up to which the above sketched approach may be extended. From a purely
mathematical point of view it is also of natural interest to get a better
understanding of the question which stochastic processes are martin gales after
an appropriate change to an equivalent probability measure. We refer to the
well known fact that a semi-martingale becomes a quasi-martingale under
a well chosen equivalent law (see e.g. Protter (1990)); from here to the question
whether we can obtain a martingale, or more generally a local martingale, is
natural.

We believe that the main theorem (Theorem 1.1 below) of this paper
contributes to both theories mathematics as well as economics. In economic
terms the theorem contains essentially two messages. First that it is possible to
characterise the existence of an equivalent martingale measure for a general
class of processes in terms of the concept of no free lunch with vanishing risk,
a concept to be defined below. In this notion the aspect of vanishing risk bears
economic relevance. The second message is that —in a general setting — there is
no way to avoid general stochastic integration theory. If the model builder
accepts the possibility that the price process has jumps at all possible times, he
needs a sophisticated integration theory, going beyond the theory for “simple
integrands”. In particular the integral of unbounded predictable processes of
general nature has to be used. From a purely mathematical point of view we
remark that the proof of the main Theorem 1.1 below, turns out to be
surprisingly hard and requires heavy machinery from the theory of stochastic
processes, from functional analysis and also requires some very technical
estimates.

The process S, sometimes denoted (S,),cg_ is supposed to be R-valued,
although all proofs work with a d-dimensional process as well. We however
prefer to avoid vector notation in d dimensions. If the reader is willing to
accept the 1-dimensional notation for the d-dimensional case as well, nothing
has to be changed. The theory of d-dimensional stochastic integration is
a little more subtle than the one dimensional theory but no difficulties arise.

The general idea underlying the concept of no-arbitrage and its weaken-
ings, stated in several variants of “no free lunch” conditions, is that there
should be no trading strategy H for the process S, such that the final payoff
described by the stochastic integral (H - S),,, is a non negative function, strictly
positive with positive probability. The economic interpretation is that by
betting on the process S and without bearing any risk, it should not be
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possible to make something out of nothing. If one wants to make this intuitive
idea precise, several problems arise. First of all one has to restrict the choice of
the integrands H to make sure that (H-S), exists. Besides the qualitative
restrictions coming from the theory of stochastic integration, one has to avoid
problems coming from so-called doubling strategies. This was already noted
in the paper by Harrison and Pliska (1979). To explain this remark let us
consider the classical doubling strategy. We draw a coin and when heads
comes out the player is paid 2 times his bet. If tails comes up, the player loses
his bet. The strategy is well known: the player doubles his bet until the first
time he wins. If he starts with 1 ECU, his final gain ( = last pay out — total sum
of the preceding bets) is almost surely 1 ECU. He has an almost sure win. The
probability that heads will eventually show up is indeed one, even if the coin is
not fair. However, his accumulated losses are not bounded below. Everybody,
especially the casino boss, knows that this is a very risky way of winning
1 ECU. This type of strategy has to be ruled out: there should be a lower
bound on the player’s loss. The described doubling strategy is known for
centuries and in French it is still referred to as ‘la martingale’.

One possible way to avoid these difficulties is to restrict oneself to simple
predictable integrands. These are defined as linear combinations of buy and
hold strategies. Mathematically such a buy and hold strategy is described as
an integrand of the form H = f 17 r,;, where T < T, are finite stopping
times and fis &, measurable. The advantage of using such integrands is that
they have a clear interpretation: when time T, (w) comes up, buy f (w) units of
the financial asset, keep them until time T,(w) and sell. A linear combination
of such integrands is called a simple integrand. An elementary integrand is
a linear combination of buy and hold strategies with stopping times that are
deterministic. This terminology agrees with standard terminology of stochas-
tic integration. (see Protter (1990), Dellacherie and Meyer (1980) and Chou et
al. (1980)). Even if the process S is not a semi-martingale the stochastic integral
(H-S)for H = f 17 r,; can be defined as the process (H*S), = f. (Smun(. 7,) —
Soune.,y)- Also the definition of the limit (H:S), = lim, (H*S), =
f-(St, — Sr,) poses no problem. The net profit of the strategy is precisely
(H*S),,. The use of stopping times is interpreted as the use of signals coming
from available, observable information. This explains why in financial the-
ories the filtration and the derived concepts such as predictable processes, are
important. It is clear that the use of simple integrands rules out the introduc-
tion of doubling strategies. This led Harrison and Kreps (1979), Kreps (1981)
and Harrison and Pliska (1981) to define no arbitrage and no free lunch in
terms of simple integrands and to obtain theorems relating these notions to
the existence of an equivalent martingale measure. In various directions these
results were extended in Duffie and Huang (1986), Stricker (1990), Dalang et
al. (1989), Ansel and Stricker (1993), Mc Beth (1992), Lakner (1992), Delbaen
(1992), Schachermayer (1993), Kusuoka (1993).

To relate our work to earlier results, let us summarise the present state of
the art. The case when the time set is finite is completely settled in Dalang et al.
(1989) and the use of simple or even elementary integrands is no restriction at
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all (see Schachermayer (1992), Kabanov and Kramkov (1993) and Rogers
(1993) for elementary proofs). For the case of discrete but infinite time sets, the
problem is solved in Schachermayer (1993). The case of continuous and
bounded processes in continuous time, is solved in Delbaen (1992). In these
two cases the theorems are stated in terms of simple integrands and limits of
sequences and by using the concept of no free lunch with bounded risk. We
shall review these issues in Sect. 6.

In the general case, i.e. a time set of the form [0, co [ or [0, 1] and with
a possibility of random jumps, the situation is much more delicate. The
existence of an equivalent martingale measure can be characterised in terms of
‘no free lunch’ involving the convergence of nets or generalised sequences, see
e.g. Kreps (1981), Lakner (1992). Kusuoka (1993) used convergence in Orlicz
spaces and Duffie and Huang (1986) and Stricker (1990) used L” convergence
for 1 £ p < co. In the latter case the restrictions posed on S were such that the

new measure has a density in L? (q = ) Contrary to the case of continu-

P
p—1
ous processes or to the case of discrete time sets, no general solution
was known in terms of “no free lunch” involving convergent sequences. Hence
there remained the natural question whether for a general adapted process S,
the existence of an equivalent martingale measure could be characterised in
such terms.

The answer turns out to be no if one only uses simple integrands. In Sect. 7,
we give an example of a process S = M + A where M is a uniformly bounded
martingale, 4 is a predictable process of finite variation, S admits no equiva-
lent martingale measure but there is “no free lunch with bounded risk” if one
only uses simple integrands. A closer look at the example shows that if one
allows strategies of the form: ‘sell before each rational number and buy back
after it’, then there is even a “free lunch with vanishing risk”. Of course such
a trading strategy is difficult to realise in practice but if we allow discontinui-
ties for the price process at arbitrary times, then we should also allow
strategies involving the same kind of pathology. The example shows that we
should go beyond the simple integration theory to cover these cases as well.
To back this assertion let us recall that the basis of the whole theory of asset
pricing by arbitrage is, of course, the celebrated Black-Scholes formula (see
Black and Scholes (1973) and Merton (1973)), widely used today by practi-
tioners in option trading. Also in this case the trading strategy H, which
perfectly replicates the payoff of the given option, is not a simple integrand. It
is described as a smooth function of time and the underlying stock price. Being
a smooth function of the stock price, its trajectories are in fact of unbounded
variation. One can argue that in practice already this strategy is difficult to
realise. In this case however one shows that the integrand can be approxim-
ated by simple integrands in a reasonable way; for details we refer the reader
to books on stochastic integration theory with special emphasis on Brownian
motion, e.g. Karatzas and Shreve (1988). In the case of the example of Sect. 7,
this reduction is not possible and as already advocated, general integrands are
really needed.
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Summing up we are forced to leave the framework of simple inte-
grands. However, we immediately face new problems. First the process
S should be restricted in order to allow the definition of integrals H-S
for more general trading strategies. S has to be a semi-martingale to realise
this. This is precisely the content of the Bichteler-Dellacherie theorem
(see Protter (1990)). It turns out that this is not really a restriction. From
the work of Follmer and Schweizer (1991) and Ansel and Stricker (1993),
we know that no free lunch conditions stated with simple integrands, imply
that a cadlag adapted process is a special semi-martingale. (A process
is called cadlag, cadlag would be better, if almost every trajectory admits
left limits and is right continuous). We refer to Sect. 7 of this paper for
a general version of this result, adapted to our framework. The second
difficulty arises from the fact that doubling-like strategies have to be ex-
cluded. This may be done by using the concept of admissible integrands H,
requiring that the process H - S is uniformly bounded from below, a concept
going back to Harrison and Pliska (1981) and developed in Delbaen (1992),
Mc Beth (1992) and Schachermayer (1993). The concept of admissible
integrand is a mathematical formulation of the requirement that an eco-
nomic agent’s position cannot become too negative, a practice sometimes
referred to as ‘your friendly broker calls for extra margin’. The third problem
is to make sure that (H*S),, = lim,_ . (H*S), has a meaning. We shall see
that this problem has a very satisfactory solution if one restricts to admiss-
ible integrands.

The condition of no free lunch with vanishing risk (NFLVR) can now be
described as follows. There should be no sequence of final payoffs of admiss-
ible integrands, f,, = (H" - S),, such that the negative parts f, tend to O uniform-
Iy and such that f, tends almost surely to a [0, co]-valued function f,
satisfying P[ fo > 0] > 0. We will give a detailed discussion of this property
below in Sect. 3. For the time being let us remark that the property (NFLVR)
is different from the previously considered concept of no free lunch with
bounded risk in the sense that we require that the risk taken, the lower bounds
on the processes (H" - S), tend to zero uniformly. In the property (NFLBR) one
only requires that this risk is uniformly bounded below and that the variables
f- tend to zero in probability. The main theorem of the paper can now be
stated as:

Theorem 1.1 Let S be a bounded real valued semi-martingale. There

is an equivalent martingale measure for S if and only if S satisfies
(NFLVR).

One implication in the above theorem is almost trivial: if there is an equivalent
martingale measure for S then it is easy to see that S satisfies (NFLVR), see the
first part of the proof in the beginning of Sect. 4. The interesting aspect of
Theorem 1.1 lies in the reverse implication: the (economically meaningful)
assumption (NFLVR) guarantees the existence of an equivalent martingale
measure for S and thus opens the way to the wide range of applications from
martingale theory.



468 F. Delbaen, W. Schachermayer

If the process S is only a locally bounded semi-martingale we still obtain
the following partial result:

Corollary 1.2 Let S be a locally bounded real valued semi-martingale. There
is an equivalent local martingale measure for S if and only if S satisfies
(NFLVR).

In Delbaen and Schachermayer (1993) counterexamples are given which show
that in the above corollary one can only assert the existence of a measure
Q under which S is a local martingale. Even if the variables S, are uniformly
bounded in L” for some p > 1, this does not imply that S is a martingale. On
the other hand we do not know whether the hypothesis of local boundedness
is essential for the corollary to hold. There is some hope that the condition is
superfluous but at present this remains an open question. In the discrete time
case the local boundedness assumption is not needed as shown in Schacher-
mayer (1993).

The proof of Theorem 1.1 is quite technical and will be the subject of
Sect. 4. The rest of the paper is organised as follows. Section 2 deals with
definitions, notation and results of general nature. In Sect. 3 we examine the
property (NFLVR) and we prove that under this condition, the limit
(H*8)y, = lim,_, (H-S), exists almost surely for admissible integrands. The
fifth section is devoted to the study of the set of local martingale measures.
Here we give a new characterisation of a complete market. It turns out that if
each local martingale measure that is absolutely continuous with respect to
the original measure, is already equivalent to the original measure, then the
market is complete and there is only one equivalent (absolutely continuous)
local martingale measure. These results are related to results from Ansel and
Stricker (1992) and Jacka (1992). We also show that the framework of
admissible integrands allows to formulate a general duality theorem (The-
orem 5.7). In Sect. 6 we investigate the relation between the no free lunch
with vanishing risk (NFLVR) property and the no free lunch with bounded
risk (NFLBR) property. In the case of an infinite horizon the latter property
permits to restrict to strategies that are of bounded support. They have
a more intuitive interpretation since they only require ‘planning’ up to
a bounded time. In Sect. 7 we introduce the no free lunch properties
(NFLVR), (NFLBR) and (NFL) stated in terms of simple strategies. It is
shown that in the case of continuous price processes one can avoid the use of
general integrands and restrict oneself to simple integrands. The result
generalises the main theorem of Delbaen (1992) in the case of a finite
dimensional price process. The relation between the no free lunch with
vanishing risk property for simple integrands and the semi-martingale prop-
erty is also investigated in Sect. 7. We also give examples that show that the
use of simple integrands is not enough to obtain a general theorem and
relate the present results to previous ones, in particular to Delbaen (1992)
and Schachermayer (1993). Appendix 1 contains some technical lemmas
already used in Schachermayer (1993). We state versions which are more
general and provide somewhat easier proofs.
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2 Definitions and preliminary results

Throughout the paper we will work with random variables and stochastic
processes which are defined on a fixed probability space (22, #, P). We will
without further notice identify variables that are equal almost everywhere.
The space L°(Q2, 7, P), sometimes written as L, is the space of equivalence
classes of measurable functions, defined up to equality almost everywhere. The
space L° is equipped with the topology of convergence in measure. It is
a complete metrisable topological vector space, a Fréchet space, but it is not
locally convex. The space L!(R, 4, P) is the Banach space of all integrable
Z -measurable functions. The dual space is identified with L*(Q, &, P) the
space of bounded measurable functions. The weak*-topology on L is the
topology a(L®, L1).

The existence of an equivalent martingale measure is proved using Hahn-
Banach type theorems. Central in this approach is the construction of a con-
vex weak* closed subset of L*. To prove that a set is weak* closed we will use
the following result. The proof essentially consists of a combination of the
classical Krein-Smulian theorem and the fact that the unit ball of L* under
the weak* topology is an Eberlein compact. (see Diestel (1975) or Grothen-
dieck (1954), p. 321, Exercise 1).

Theorem 2.1 If C is a convex cone of L™ then C is weak* closed if and only if for
each sequence (f,), >, in C that is uniformly bounded by 1 and converges in
probability to a function f,, we have that f, € C.

The properties of stochastic processes are always defined relative to a fixed
filtration ( ), g, . This filtration is supposed to satisfy the usual conditions
i.e. the filtration is right continuous and contains all negligible sets: if
Bc Ae# and P[A] =0 then Be #,. We also suppose that the sigma
algebra # is generated by (), %,. Stochastic intervals are denoted as
[T,S] where S < T are stopping times and [T, S] = {(t, w)[te R, w e Q,
T (w) =t < S(w)}. Stochastic intervals of the form T, S] etc. are defined in
the same way. The interval [T, T | is denoted by [T ] and it is the graph of the
stopping time T, {(T (w), w)| T (w) < oo }. We note that according to this
definition the set [0, oo | equals R x Q. Stochastic processes are indexed by
a time set. In this paper the time set will be R.. This will cover the case of
infinite horizon and indeed represents the general case since bounded time sets
[0,¢] can of course be imbedded by requiring the processes to be constant
after time t. It also contains the case of discrete time sets, by requiring the
processes and the filtration to be constant between two consecutive natural
numbers. A mapping X : R, x Q — R is called an adapted stochastic process if
for each te R, the mapping w — X(t, w) = X,(w) is &, measurable. X is
called continuous (right continuous, left continuous), if for almost all w € Q,
the mapping t — X,(w) is continuous (right continuous, left continuous).
Stochastic processes that are indistinguishable are always identified. Other
concepts such as optional and predictable processes are also used in this paper
and we refer the reader to Protter (1990) for the details. The predictable



470 F. Delbaen, W. Schachermayer

g-algebra 2 on R, x Q is the g-algebra generated by the stochastic intervals
[0, T ], where T runs through all the stopping times. A predictable process
H is a process that is measurable for the g-algebra 2. For the theory of
stochastic integration we refer to Protter (1990) and to Chou et al. (1980). If
X is a real valued stochastic process the variable X* is defined as
X* = sup, > o| X;(w)|. This variable is measurable if X is right or left continu-
ous. Sometimes we will use X which is defined as sup, 5, > o| X, (@)|. X* is
called the maximum function and it plays a central role in martingale theory.
If X is a cadlag process, i.e. a right continuous process possessing left limits for
each t > 0, then 4X denotes the process that describes the jumps of X. More
precisely (4X), = X, — X, and (4X), = X,.

If X is a semi-martingale then X defines a continuous operator on the
space of bounded predictable processes of bounded support into the space L°.
The space of semi-martingales can therefore be considered as a space of linear
operators. The semi-martingale topology is precisely induced by the topology
of linear operators. It is therefore metrisable by a translation invariant metric
given by the distance of X to the zero semi-martingale:

D(X) = sup{ Y 27"E[min(|(H" X),|, 1)]| H predictable |H| < 1} ;
nx1
For this metric, the space of semi-martingales is complete, see Emery (1979).
A semi-martingale X is called special if it can be decomposed as
X =M + A where M is a local martingale and A is a predictable process of
finite variation. In this case such a decomposition is unique and it is called the
canonical decomposition. It is well known (see Chou et al. (1980)) that
a semi-martingale is special if and only if X is locally integrable, i.e. there is an
increasing sequence of stopping times T,, tending to oo such that X% is
integrable. The following theorem on special semi-martingales will be used on
several occasions, for a proof we refer to Chou et al. (1980).

Theorem 2.2 If X is a special semi-martingale with canonical decomposition
X =M + Aand if H is X-integrable then the semi-martingale H - X is special if
and only if

(1) H is M-integrable in the sense of stochastic integrals of local martingales
and

(2) H is A-integrable in the usual sense of Stieltjes-Lebesgue integrals.

In this case the canonical decomposition of H*X is given by H- X =
H-M+ H-A.

The following theorem seems to be folklore. Essentially it may be deduced
from (the proof of) an inequality of Stein (Stein (1970)), see also Lépingle
(1978) and Yor (1978b). For a survey of these results and related inequalities
see Delbaen and Schachermayer (1994). For convenience of the reader we
include the easy proof, suggested by Stricker, of Theorem 2.3.

The theorem and more precisely its Corollary 2.4, will be used in Sect. 4. It
allows to control the jumps of the martingale part in the canonical decomposi-
tion of a special semi-martingale.
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Theorem 2.3 If X is a semi-martingale satisfying |[(4X)*|, < oo, where
1 <p< oo, then
(a) X is special and has a canonical decomposition X = M + A

(b) A satisfes (44)* I, < L 1(4X)*1,

?_p—l||

(c) M satisfies ||[(AM )* |, = -1

(AX)* .

Proof. Since X is locally p-integrable it is certainly locally integrable and
hence is special. (a) is therefore proved. Let X = M + A be the canonical
decomposition where A is the predictable process of finite variation and M is
the local martingale part. Let Y be the cadlag martingale defined as
Y, = E[(4X)*| 7]

Since A is predictable the set {44 + 0} is the union of a sequence of sets of
the form [T, ] where T, are predictable stopping times. For each predictable
stopping time T we have that AA; = E[4X 1| % +_] and hence

|4Ar| S E[|AX1||F 7 1 S E[AX)*|Fr_]=Yr_ = Y*.

This implies that (44)* < Y*. From Doob’s maximal inequality, see Della-
cherie and Meyer (1980), it now follows that

Y%, < %n (4X)*|, and therefore

2p — 1
P 4x)*1,. O

p
* < * * <
(44) Ilp=p_1||(AX) l, and [(AM)*]l, = o—1

Corollary 2.4 If T is a stopping time then:
p T
[(4A)zrl, = 71 1(4X)* I, ;

2p—1
Iyl s F—|
p—

(AX)*, .

Corollary 25 If 1<p< oo and the semi-martingale X satisfies
sup{[(4X)z |, T stopping time} = N < co, then for p’ < p there is constant
k(p, p') depending only on p and p’ such that

[(4A)* 1l < k(p, p")N .

Proof. Let the stopping time T be defined as T = inf{t||(4X),| = c¢}. From the
hypothesis we deduce that j|AX | £ NP and this implies, by the Markov-
Tchebychev inequality, that ¢’ P[(4X)* > ¢] < N”. The rest follows easily. []

Remark 2.6 In Corollary 2.4 we cannot replace (4X)* by (4X)r. The follow-
ing example illustrates this. We construct a bounded semi-martingale X such that
for each ¢ > 0 there is a stopping time T with |4A47| = 1 and |4X ¢| < &. This
clearly shows that there is no constant K such that [|(44)rl, £ K [[(4X)r|l,.
The construction is as follows: For 0 < ¢t < 1 put X, = 0. We now proceed by
recursion. For n a natural number we suppose the process X is already



472 F. Delbaen, W. Schachermayer

constructed for t < n. The filtration & is defined as #; = ¢(X,; u < s) and
F,_=0(X,;u<s). At t=n we put a jump (4X), such that |(4X),] is
uniformly distributed over the interval [0, 2] and is independent of the past
& ,- of the process. This means that |(4X),| is independent of the variables
(4X)1, ..., (4X)y-1. If (X),— = 0 then (4X), is uniformly distributed over
the interval [ — 2, 0], otherwise if (X),- < 0 then (4X), is uniformly distrib-
uted over [0,2]. For n<t<n+1 we put X, = X,. The filtration & is
clearly right continuous and if we augment it with the null sets we obtain that
the natural filtration of X satisfies the usual conditions. For ¢ > 0 we now
define T = inf{t||(4X),| < ¢}. Clearly T < oo almost surely and satisfies the
desired properties.

If A is a predictable process of finite variation with A, = 0, we can
associate with it a (random) measure on R . The variation of A4, a process
denoted by V, is given by

VI=SUP{ Y IASA—A_le’0=so<s1... <s,,=t}.
k=1

The process V is predictable and it also defines a (random) measure
on R.. The process V' defines a o-finite measure u, on the predictable
g-algebra on R, x Q. The definition of u, is, for K a predictable subset of
R, x Q:

(K = E[}O K,,dV,,} .

The measure p, is defined in a similar way, but its definition is restricted to
a o-ring to avoid expressions like oo — oo. It is well known, see Meyer
(1976, chap. I), that the measure py is precisely the variation measure of u,.
From the Hahn decomposition theorem we deduce that there is a partition
of R, x @, in two sets, B, and B_, both predictable, such that (15, -+ 4) and
(— 1p_+A) are increasing. Moreover V = ((1z, — 15 )+ A). For almost all
o the measure dA4 on R is absolutely continuous with respect to dV and the
Radon-Nikodym derivative is precisely lp, — 15 where
F, ={t|(t, 0)e B, }. We will refer to this decomposition as the Hahn
decomposition of A. Note that the difficulty in the definition of the pathwise
decomposition of the measures dA(w) comes from the fact that the sets F,
and F_ have to be glued together in order to form the predictable sets B,
and B_. See Meyer (1976, chap. I), for the details of this result which is due to
Cathérine Doléans-Dade.

Throughout the paper, with the exception of Sect. 7, S will be a fixed
semi-martingale. As mentioned in the introduction S represents the dis-
counted price of a financial asset.

Definition 2.7 Let a be a positive real number. An S-integrable predictable
process H is called a-admissible if Hy =0 and (H*S) = — a (i.e. for all t = 0:
(H*S), =2 — a almost everywhere). H is called admissible if it is admissible for
someacR,.
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Given the semi-martingale S we denote, in a similar way as in Stricker (1990),
by K, the convex cone in L° formed by the functions

Ko = {(H'S)mlH admissible and (H+S),, = lim (H - S), exists a.s} ]

1= w

By C, we denote the cone of functions dominated by elements of K, i.e.
Co= K, — LY. With C and K we denote the corresponding intersections
with the space L* of bounded functions K = KonL* and C = ConL™. By
C we denote the closure of C with respect to the norm topology of L* and by
C* we denote the weak* closure of C.

Definition 2.8 We say that the semi-martingale S satisfies the condition of
(i) mo arbitrage (NA) if CnL% = {0} ~
(ii) no free lunch with vanishing risk (NFLVR) if CnL% = {0}.

It is clear that (ii) implies (i). The no-arbitrage property (NA) is equivalent to
KonL% = {0} and has an obvious interpretation: there should be no possibil-
ity of obtaining a positive profit by trading alone (according to an admissible
strategy): it is impossible to make something out of nothing without risk. It is
well known that in general the notion (NA) is too restrictive to imply the
existence of an equivalent martingale measure for S, see Sect. 7. Compare also
to the results in Dalang et al. (1989) and Schachermayer (1993, Remark 4.11).

The notion (NFLVR) is a slight generalisation of (NA). If (NFLVR) is not
satisfied then there is a f, in L%, not identically 0, as well as a sequence ( f,), > |
of elements in C, tending almost surely to f,, such that for all n we have that

1 . . . :
fu = fo — —. In particular we have f, = — —. In economic terms this amounts
n n

to almost the same thing as (NA), as the risk of the trading strategies becomes
arbitrarily small. See also Proposition 3.6 below.

We emphasise that the set C and hence the properties (NA) and (NFLVR)
are defined using general admissible predictable processes H. This is a more
general definition than the one usually taken in the literature and used by the
authors in previous papers. (See e.g. Schachermayer (1993) and Delbaen
(1992)). These classical concepts were defined using simple integrands or/and
integrands with bounded support. In these cases we will say that S satisfies
(NA) for simple integrands, (NFLVR) for integrands with bounded support, etc.
These notions will reappear in Sect. 7, where we will emphasise on the
differences between these notions.

We close this section by quoting a result due to Emery and Ansel and
Stricker. The result states that under suitable conditions the stochastic inte-
gral of a local martingale is again a local martingale. A counterexample due to
Emery (1980) shows that in general a stochastic integral of a local martingale
need not be a local martingale. From Theorem 2.2 it follows that if M is a local
martingale with respect to a measure P, then H - M is a local martingale if and
only if it is a special semi-martingale, i.e. if it is locally integrable. The next
theorem gives us a criterion that is related to admissibility of H.
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Theorem 2.9 If M is a local martingale and if H is an admissible integrand for
M, then H+ M is a local martingale. Consequently H - M is a supermartingale.

Proof. We refer to Emery (1980) and Corollaire 3.5 in Ansel and Stricker
(1992). It is an easy consequence of Fatou’s lemma that if H-M is a local
martingale uniformly bounded from below, then it is a supermartingale. []

3 No free lunch with vanishing risk

The main result of this section states that for a semi-martingale S, under the
condition of no free lunch with vanishing risk (NFLVR), the limit (H - S),, =
lim,_, ,, (H * S), exists and is finite whenever the integrand H is admissible. To
get a motivation for this result, consider the case where we already know that
there is an equivalent local martingale measure Q. In this case, by Theorem
2.9, the stochastic integral H - S is a Q-local martingale if H is admissible. This
implies that it is a supermartingale and the classical convergence theorem
shows that the limit (H - S),, = lim,, ,(H - S), exists and is finite almost every-
where. But of course we do not know yet that there is an equivalent martingale
measure Q and the art of the game is to derive the convergence result simply
from the property (NFLVR). We start with two preparatory results.

Proposition 3.1 If S is a semi-martingale with the property (NFLVR), then the set
{(H*S)y|H is 1-admissible and of bounded support}

is bounded in L°.

Proof. H 1-admissible means that H is S-integrable and (H+S), = — 1. Being
of bounded support means that H is 0 outside [0, T | where T is a positive real
number. The limit (H - S),, = lim,_, (H - S), exists without difficulty because
(H-S), becomes eventually constant. Suppose that the set {(H-S).|H is
1-admissible and of bounded support} is not bounded in L°. This implies the
existence of a sequence H" of 1-admissible integrands of bounded support and
the existence of « >0 such that P[(H"-S), = n] > a > 0. The sequence

1 1
L= min<;(H"-S)w, l)is inC,P[fy,=1]1>a>0and | £, ||l g;. By tak-

ing convex combinations we may take g, € conv(f,, fu+1, . . . ) that converge
a.s. to g: 2 - [0, 1]. (we can use Lemma Al.1 but a simpler argument in L*
can do the job, compare to Remark 3.4 in Schachermayer 1993). Clearly
E[g] 2 « and therefore P[g > 0] = = a« > 0. By Egorov’s theorem g, — ¢
uniformly on a set Q' of measure at least 1 — /2. The functions h, =
min(g,, 1¢) are still in the set C and h, — g 1, in the norm topology of L®. Since
P[g1, > 0] = B/2 > 0 we obtain a contradiction to (NFLVR). O

Proposition 3.2 If S is a semi-martingale satisfying (NFLVR), then for each
admissible H the function (H + S)* = sup <, |(H * S),| is finite almost everywhere
and the set {(H+S)*|H 1-admissible} is bounded in L°.
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Proof. If the set is not bounded, we can find a sequence of 1-admissible
integrands H", stopping times T, and « > 0 such that P[T, < v ] >a >0
and (H"+S)r, >n on {T, < oo }. For each natural number n take t, large
enough so that « < P[T, < t,] and observe that for K" = H" 1y mn(,,1,)] WE
have that K" is of bounded support and P[(K"*S), > n] > a > 0, a contra-
diction to Proposition 3.1. O

We now prove the main result of this section. It extends Proposition 4.2 from
Schachermayer (1993) to the present case of a general semi-martingale S.

Theorem 3.3 If S is a semi-martingale satisfying (NFLVR), then for H admiss-
ible the limit (H*S)., = lim,_, ,, (H - S), exists and is finite almost everywhere.

Proof. We will mimic the proof of the martingale convergence theorem of
Doob. The classical idea of considering upcrossings through an interval [, y]
may in mathematical finance be interpreted as the well known procedure:
“Buy low, sell high”. We may suppose that H is 1-admissible and hence
(H-S)* = supy<,|(H:S)| < oo almost surely by Proposition 3.2. We
therefore only have to show that liminf._,, (H-S), = limsup,.. (H-S)
as. Suppose this were not the case and that P[liminf,.,(H-S), <
limsup,. (H*S),] > 0. Take f < y and o > 0 so that P[liminf._,, (H*S), <
B <y <limsup,., (H*S),] >« We will construct finite stopping times
(U,, Vi)u =1 such that

MUV, sU, sV, ... SU SV, s = ..

(2) L"=Yy_, H 1)y, v, is (1 + p)-admissible

() PL(L"*S)s >n(y — p)] > /2.

The existence of such a sequence clearly violates the conclusion of Prop-
osition 3.2 and this will prove the theorem.

The stopping times are constructed by induction. Take (g,), 5, strictly
positive and such that the sum ) ,. &, < 2/100. Let A be the set defined as
A= {liminf,.,,(H*S), <y < p <limsup,, (H*S),}. Since the Boolean al-
gebra Uo <., is dense in the sigma-algebra % we have that there is ¢; and
Ay € #, such that P[A4A4,] <¢;. For o¢A, we put U; =V, =, and we
concentrate on w € A;.

Define first

y =inf{t|t 2 t; and (H-S), < B} for w in A4,
V4 =inf{t|t 2 U} and (H*S), > y} for w in 4;.

The variables U and V| are clearly stopping times and take valuesin [0, oo ].
By construction of 4; we have that

PVi< 0] ZP[AnA;]>a —¢; .
Take s; > t; so that P[V| < s;] > a — ¢; and define
Ul =min(U’l,Sl),

Vl = mln(V’l, Sl) G
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Theset By = {(H*S)y, S B <y=<(H:S)y,}isin F and P[B;nA] > o —¢;.
Put K' = H1yy, v,;. We claim that K' is (1 + p)-admissible. Indeed on

¢ clearly (K'+S),=0 for all . For we A; and t £ U, we also have
(K'+S)(w)=0. Forwe A, and U; <t <V, we have

(K'S)=H-S)—(H"S)y, 2 —1-p=-(1+p).

Let us put L' = K'. We now apply the same reasoning on the set (B;nA4) i.e.
we take t, = sy, 4, € #,, such that A, < By, P[4,4(BinA)] > o — & — &.
On the set A, we define

U, = inf{t|t 2 t, and (H-S), < B}
VY = inf{t|t = U, and (H+S), > 7}

P[V)< o0]>a—é& —é&, and we select s, >, so that P[V) <s,] >
o — &, — &,. Take

U2 =min(Ul2’SZ)
V, =min(V5,s;)
KZ =H ]EU:szﬂ :

The integrand is (1 + f)-admissible, but outside the set B, the process (K*+ )
is zero. On the set B, however, (L'*S), =(L'*S),, 2y — f > 0. The integ-
rand L? = L'+ K? remains therefore (1 + f)-admissible. Furthermore
P[(L*-S), = 2(y — f)] > & — & — &,. This permits us to continue the con-
struction and to define L" by induction. O

The rest of this section is devoted to some results giving a better understand-
ing of the property (NFLVR) of no free lunch with vanishing risk and relating
this property to previous results of Delbaen (1992) and Schachermayer (1993).

Corollary 3.4 If the semi-martingale S satisfies (NFLVR) then the set
{(H*S),|H is 1-admissible}
is bounded in L°.

Proof. This follows immediately from the existence of the limit (H - S),, and
from Proposition 3.1. |

Remark. The convergence theorem shows in particular that in the definition
of K, the requirement that the limit exists is superfluous. We also want to
point out that to derive the above results 3.1 to 3.4, we only used the condition
(NFLVR) for integrands with bounded support, i.e. for integrands that are
zero outside a stochastic interval [0, k] for some real number k.

The next result only uses the (very weak) assumption of no arbitrage.
We emphasize that the property (NA), as we defined it, refers to general
integrands.

Proposition 3.5 (compare Schachermayer (1993), Proposition 4.2) If the semi-
martingale S satisfies (NA) then for every admissible integrand H, such that
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(H*S),, = lim,,, (H"S), exists, we have for eachte R :
I(H =8)i oo S IH *S) o Ml -
Proof. If |(H *S); o > | (H *S)% | » then we define the set A € &, as
A={HS), < —(H $zlx} .

The integrand K = 1,1;, . is admissible, the random variable (K - §),, exists,
is non negative and P[(K - S), > 0] > 0. This violates (NA). O

The next result may be seen as a sharpening of Proposition 1.5 of Schachermayer
(1993). It combines the property (NA) with the conclusion of Proposition 3.1.

Proposition 3.6 If the semi-martingale S fails the property (NFLVR) then either
S fails (NA) or there exists fo: Q2 — [0, 0] not identically 0, a sequence of

1
variables (f,)y>1 = ((H"*S)% )z 1 in Ko with H" a ;-admissible integrand and
such that lim,_, ,, f, = fo in probability.

Proof. It is clear that the existence of such sequences violates (NFLVR).
Indeed the set {n(H"-S),;n = 1} is unbounded in L°, whereas the integrands
(nH"), >, are 1-admissible. This contradicts Proposition 3.1.

The converse is less obvious. Suppose that S satisfies (NA) and suppose
that (g,),»: is a sequence in C such that go = lim,., g, in L%, go 2 0,
P[go > ] > a > 0. From the hypothesis on the sequence (g,), > | we deduce that
llgr |l tends to 0. By passing to a subsequence, if necessary, we may suppose

1
that | g, [l = - For each n we take a function h, in K, such that h, = g,. If

1 1
h, = (L"*S), then | h, |, = - and hence L" is ;-admissible by Proposition

3.5 and the property (NA) of S. Lemma Al.1 allows us to replace h, by
f, € conV(h, hy+1 . . . ) such that f, converges to fo: Q — [0, oo ] in probability.
Let H" be the corresponding convex combination of the integrands (B2 s

1 ; .
Obviously H" is still —-admissible and f, tends to 0 in L*. For n large enough
n

we have | g, —golle £2/2 and hence P[h, > 0] =P[g, > /2] > a/2.
Lemma Al.1 now shows that P[ f, > 0] > 0. O

The following corollary relates the condition (NFLVR) with the condition (d)
in Delbaen (1992) (which in turn is just reformulating the concept of (NFLBR)
to be defined in Sect. 6 below).

Corollary 3.7 The semi-martingale S satisfies the condition (NFLVR) if and
only if for a sequence (g,), =, in Ko, the condition | g, || — 0 implies that g,
tends to 0 in probability.

Proof. We first observe that the condition stated in the corollary implies (NA).
The corollary is now a direct consequence of the Proposition 3.6 and the
Lemma Al.1. O
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Corollary 3.8 Under the assumption (NA), the semi-martingale S satisfies the
condition (NFLVR) if and only if the set

{(H*S)y|H 1-admissible and of bounded support}
is bounded in L°.

Proof. From the proof of Proposition 3.2, it follows that the set
{supo <, (H*S),|H 1-admissible} is also bounded in L°.

If the sequence (g,),>: in Ky, satisfies | g, ||, =0 then by the (NA)
property and Proposition 3.5, g, = (H"+S),, where H" is ¢,-admissible with

1
& = |lgn |- The sequence a—g,, has to be bounded which is only possible

when g, tends to 0 in probability. The conclusion now follows from the
preceding corollary. O

4 Proof of the main theorem

In this section we prove the main theorem of the paper. The proof follows the
following plan: prove that the set C, introduced in Sect. 2, is weak*-closed in
L* and apply the separation theorem of Kreps and Yan (see Schachermayer
(1993)), which in turn is a consequence of the Hahn—Banach theorem. We use
similar arguments as in Delbaen (1992) and Schachermayer (1993). The
technicalities are however different and more complicated.

Definition 4.1 (compare Mc Beth (1992) and Schachermayer (1993), Defini-
tion 3.4) A subset D of L° is Fatou closed if for every sequence ( f,), » ; uniformly
bounded from below and such that f, — f almost surely, we have f€ D.

We remark that if D is a cone then D is Fatou closed if for every sequence
(fu)nz1in D with f, = — 1 and f, - f almost surely, we have fe D.
The next result is the technical version of the main theorem.

Theorem 4.2 If S is a bounded semi-martingale satisfying (NFLVR), then
(i) Cq is Fatou closed and hence
(i) C = ConL®™ is a(L®, L) closed.

Proof. We will not prove the first part of Theorem 4.2 immediately, its proof is
quite complicated and will fill the rest of this section.

The second assertion is proved using Theorem 2.1. If C, is Fatou closed
then we have to prove that C = ConL® is closed for the topology o(L*, L!).
Take a sequence (f,), >, in C, uniformly bounded in absolute value by 1 and
such that f, — f almost surely. Since C, is Fatou closed the element f belongs
to C, and hence also feC. O

We now show how Theorem 4.2 implies the main theorem of the paper. For
convenience of the reader we restate the main Theorem 1.1.
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Theorem 1.1 (Main theorem) Let S be a bounded real valued semi-martingale.
There is an equivalent martingale measure Q for S if and only if S satisfies
(NFLVR).

Proof. We proceed on a well known path (Delbaen (1992), Mc Beth (1992),
Schachermayer (1992), Stricker (1990), Lakner (1992), Kreps (1978)). Since
S satisfies (NA) we have CnL% = {0}. Because C is weak* closed in L™ we
know that there is an equivalent probability measure Q such that Eq[f] =0
for each fin C. This is precisely the Kreps-Yan separation theorem, for a proof
of which we refer to Schachermayer (1993, Theorem 3.1). For each s <1,
Be %, acR we have afS,—S)1zeC (S is bounded!). Therefore
Eo[(S: — S5)15] = 0 and Q is a martingale measure for S.

The condition (NFLVR) is not altered if we replace the original probabil-
ity measure by an equivalent one. In the proof that condition (NFLVR) is also
necessary, we may therefore suppose that P is already a martingale measure
for the bounded semi-martingale S. If H is an admissible integrand then by
Theorem 2.9 we know that the process (H - S) is a supermartingale. Therefore
E[(H-S),1< E[(H-S),] =0. Every function f in C therefore satisfies
E[f]<0. The same applies for elements in the norm closure C of C.
Therefore CnL% = {0}. O

We now show how the main theorem implies Corollary 1.2 pertaining to the
locally bounded case. We refer to Delbaen and Schachermayer (1992) for
examples that show that we can only obtain an equivalent local martingale
measure for the process S. The proof of Corollary 1.2 is similar to Schacher-
mayer (1993, Theorem 5.1).

Corollary 1.2 Let S be a locally bounded real valued semi-martingale. There is
an equivalent local martingale measure Q for S if and only if S satisfies
(NFLVR).

Proof. Since S is locally bounded, there is a sequence o, = + © and an
increasing sequence of stopping times T, — oo so that on [0, T,] the process
S is bounded by «,. We replace S by

o 1
S=81grg+ 2. 2 "————

My, 7,07 5)
nx1 Oy + On+ 1 1% Trsd

S is bounded and satisfies (NFLVR) since the outcomes of admissible integ-
rands are the same for S and §. A martingale measure for § is a local
martingale measure for S and therefore the corollary follows from the main
theorem. The proof of the necessity of the condition (NFLVR) is proved in the
same way as in the Theorem 1.1. O

Remark. The necessity of the condition (NFLVR) and Theorem 4.2 show
that if S is a locally bounded local martingale then the set C, is Fatou
closed.

We now proceed with the proof of Theorem 4.2. The bounded semi-
martingale S will be assumed to satisfy the property (NFLVR). We take
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a sequence h, € Co, h, = — 1 and h, — h a.s.; we have to show h € C,. This is the
same as showing that there is a f, € K, with f, = h. For each n we take g, € K,
such that g, = h,. The sequence g, is not necessarily convergent and even if it
were, this does not give good information about the sequence of integrands used
to construct g,. To overcome this difficulty we introduce a maximal element
(compare Remark 4.4 below). Define D as the set D = { f| there is a sequence K"
of 1-admissible integrands such that (K"+S),, »f as. and f = h}.

Lemma 4.3 The set D is not empty and contains a maximal element f,.

Proof. D is not empty. Indeed D contains an element g that dominates k. To
see this we take g, as above and apply Lemma A1.1. Next observe that the set
D is bounded in L° since it is contained in the closure of the set {(H ), |H
1-admissible} which is bounded by Corollary 3.4. The set D is clearly closed
for the convergence in probability. We now apply the well known fact that
a bounded closed set of L° contains a maximal element. For completeness we
give a proof. We will use transfinite induction. For « = 1 take an arbitrary
element f; of D. If « is of the form « = f + 1 and if f; is not maximal then
choose f, = fi; P[ f, > f3] > 0 and f, € . If a is a countable limit ordinal then
o = lim S, where f, is increasing to o. The sequence fj is increasing and converges
to a function f, finite a.s. (D is bounded!). In this way we construct for each
countable ordinal the variable f,. Since E[exp( — f,)] is well defined and form
a decreasing “long sequence”, this sequence has to become eventually stationary,
say at a countable ordinal a,. By construction f, = f, is maximal. O

Remark 4.4 Let us motivate why we introduced the maximal element f, in the
above lemma. As already observed the sequence g, introduced before Lemma
4.3 is not of immediate use. Our goal is, of course, to find a 1-admissible
integrand H, which is, in some sense, a limit of the sequence H, of the
1-admissible integrands used to construct the sequence g,. But the conver-
gence of (g,), > (Which we may assume by Lemma A1.1) does not imply the
convergence of the sequence (H,), in any reasonable sense. We illustrate this
with the following example in discrete time. Let (r,).>; be a sequence of
Rademacher functions i.e. a sequence of independent identically distributed
variables with P[r,= +1]=P[r,= —1]=3. Let S,=)"_ r and
So = 0. For each n, an odd natural number we take for the strategy H" the so
called doubling strategy. This strategy is defined as

H=21 if rn=... =r_1=1
= 0 elsewhere .
Clearly (H"+S), = Hiry + ... + H}_r, hence we obtain
(H"-S), =2"'—1 with probability 27"
= —1  with probability 1 — 27"

For odd n the final outcome g, satisfies g, = lim,, ,, (H"* S), = — 1 almost
surely.
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For each n, an even natural number, we introduce a “doubling strategy”
H" starting at time n. More precisely

H'=0 for t<n
=2""lift=n+m and rpp1= ...Tm-1=1
= ( elsewhere .

Clearly for t < n: (H"S), = 0 and for t > n: (H"*S), = Hy(rn+ D+ ...+ Hi-4(r)
hence for t > n:

(H"-S), =2“"" — 1 with probability 27“~"
= =1 with probability 1 —27¢™" |

Again, for each even number n, the final outcome g, satisfies
g = lim,_, . (H"+S), = — 1 almost surely. Hence all the variables g,, for odd
as well as for even n, are equal to — 1 almost surely and hence trivially
g =limg,= — 1 as. On the other hand the sequence H", along the even
numbers, tends to zero on R, x Q. Along the odd numbers the sequence H"is
constant and equal to the same doubling strategy. The sequence H" is
therefore not converging. Note however that the limit function g is not
maximal in the sense of Lemma 4.3. If we take limits along the even numbers
then the pointwise limit H of H" is zero and hence (H - §),, = 0. The example
suggest that the outcome 0, which is larger than g, can be obtained by looking
at limits of the strategies H". So the remedy is to replace the function g by the
larger outcome 0. Replacing g by a maximal element is in this sense a “best try”.
Of course, this is only a very simple example and the reader may construct
examples where even more pathological phenomena occur. But the present
example shows in a convincing way, that the convergence of the final outcome
g, does not imply any kind of convergence of the corresponding integrands H".
The difficulties arising from the above introduced “suicide strategies” H"
were already addressed in Harrison and Pliska (1981).
We finish this remark by giving an example of a process (S,), = o such that
K = Ko,nL” is not a(L*, L') closed. This underlines again the importance of
considering the cone C,, of elements dominated by elements of K, a phenom-
enon already encountered in the Kreps-Yan theorem (see Schachermayer
(1993), Theorem 3.1). The example is in discrete time. We consider a sequence
Y, of independent variables taking 3 possible values {a,b,c}. The probability
is defined as P[Y,=a]=%; P[Y,=b]=3—4"" P[Y,=c]=4"" We
again use the sequence of Rademacher functions defined this time as r, = 1 if
Y,=a,andr,= — 1if Y,=b or c. Let T be defined as the first n so that
Y,=c. It is clear that P[there is n such that Y, = c] £4%. We define
the process S as S, = Y " ") r,. More precisely we take the sum of the first
m Rademacher functions but we stop the process at T. The original measure is
clearly a martingale measure for S. Let us now define B, as the set {T > n}and
let H” be the doubling strategy starting at time n. From the definition of T it
follows that the final outcome g, = (H"*S),, = — 15, The sequence g, tends
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weak* tog = — 17 _ ;. This random variable g however is not in the set K.
Suppose on the contrary that H is a predictable integrand such that
(H*S)p = — 1j7- 5. On the set {T < n — 1} we can without disturbing the
final outcome, replace H,, . . ., H, by 0. This new integrand is still denoted by
H. Let now n be the first integer such that H, is not identically 0. On the set
{T = n} the product H,r,is also the final outcome. Since this set is disjoint from
the set {T = oo} we find that H, =0 on the set {T = n}. The variable H, is
F,-, measurable and by independence of &,_; and Y, we therefore have
H, =0 on the set {T > n — 1}. This contradicts the assumption on n. O

For the rest of the proof we will denote by f, a maximal element of D, (f,), >,
is a sequence of elements, obtained as f, = (H"- S),, where H" are 1-admissible
strategies H", and the sequence f, converges to f, almost surely. Remark that if
we can prove that f, € K, we finish the proof of Theorem 4.2.

Lemma 4.5 With the notation introduced above we have that the random
variables

Fom=((H"— H™)-S)* = sup |(H"-S), — (H™ S)|

teR,

tend to zero in probability as n,m — oo.

Proof. Suppose to the contrary that there is « > 0, sequences (n, my); >
tending to oo and for each k: P[sup, s o((H™*S), — (H™*S),) > a] = o
Define the stopping times T as

T, = inf{t|(H™*S), — (H™*S), = o}

so that we have P[T, < o0 ] = a.

Define L* as L*= H™ 1y, 1, + H™1yg, . L* is predictable and it is
1-admissible. Indeed for t < T, we have (L*+S), = (H™*S), = — 1 since H™ is
1-admissible. For t = T, we have

(L¥- S), = (H™* S)r, + (H™S), — (H™- S)y,

ZH™S)y+oz —1+a.

Denote lim,, (L*+ S), by pi. From the preceding inequalities we deduce that
px can be written as p, = @y + ¥, where

Ok =fulin,- o)+ lin< oy and Pl 2a]2a.

By assumption ¢, — f, and by taking convex combination as in Lemma A1.1
we may suppose that Y, — o where P[y, > 0] > 0. Therefore convex combi-
nations of p; converge almost surely to an element f, + ,, a contradiction to
the maximality of f,. O

Remark 4.6 Let us give an economic interpretation of the argument of the
proof. At time T, we know that the trading strategy H™ has obtained the result
(H™* S)r, which is at least a better than (H™- S);, on a set of measure bigger
than a. On the other hand we know that, for k big enough, both strategies
yield at time oo a result close to fy. Having this information the economic
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agent will switch from the strategy H™ to H™ since, starting from a lower level,
H™ yields almost the same final result, i.e. the gain on the interval | T}, oo [ is
better for H™ than for H™. The strategy L* precisely describes this attitude.
The proof used convergence in probability. In the rest of the proof we will
make use of decomposition theorems, estimation of maximal functions etc.
These methods are easier when applied in an “L*-environment”. We therefore
replace the original measure P by a new equivalent measure Q we will now
construct.
First we observe that (H"+S), converges uniformly in t. The variable
g = sup,sup, |(H"+S),| is therefore finite almost surely. For Q we now take
a probability measure equivalent with P and such that g € L*(Q) e.g. we can

. . dQ exp( — q) .
take Q with density — = ———————. From the dominated convergence
YaP T Elexp(— )]
theorem we then easily deduce that

=0.
L}Q)

lim

n,m-— oo

sup|(H"+S), — (H™* S)|

t

From now on Q will be fixed. Since S is bounded it is a special semi-
martingale and its canonical decomposition (with respect to Q) will be
denoted as S = M + A, where M is the local martingale part and 4 is of finite
variation and predictable. The symbols M and A are from now on reserved for
this decomposition.

The next lemma is crucial in the proof of the main theorem. It is used to
obtain bounds on H"+ M. Because we shall need such an estimate also for
other integrands we state it in a more abstract way. For A >0, let A, be the
convex set of 1-admissible integrands H with the extra property
I(H - S)* |0 S A

Lemma 4.7 For A> 0 the set of maximal functions {(H+M)*|H e #;} is
bounded in L°(Q).

Proof. Fix A > 0 and abbreviate the set #°, by #. The semi-martingales H* S
where H is in #, are special (with respect to Q) because their maximal
functions are in L2(Q). Therefore, by Theorem 2.2, the canonical decomposi-
tion of H - S comes from the decomposition S = M + A i.e,, H+ M is the local
martingale part of H+S and H- 4 is the predictable part of finite variation.

Because the proof of the lemma is rather lengthy let us roughly sketch the
idea, which is quite simple. If K" is a sequence in # such that (K"-M )* is
unbounded in probability, then K"+ 4 is also unbounded and — keeping in
mind that K"+ 4 is predictable — using good strategies we might take advant-
age of positive gains. This turns out to be possible as the calculations will
show that the gains coming from the predictable part A in the long run
overwhelm the possible losses coming from the martingale part M. This will
contradict the property (NFLVR). Very roughly speaking, the gains coming
from the predictable part A add up proportionally in time, whereas the
expected losses from the martingale part only add up proportionally to
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J/time. These phenomena are due to the orthogonality of martingale differ-
ences, whereas the variation of the predictable part over the union of two
intervals is the sum of the variations over each interval.
Let us now turn to the technicalities. If {(H - M)*|H € #} in not bounded
in L°, there is a sequence (K"), » ; in #, as well as « > 0, such that for all n > 1
we have Q[(K"-M)* >n*] > 8a. From the L? bound on (H-S)* and
2

Tchebychev’s inequality we deduce that Q[sup,|(K"*S),| > n] g% and for

n large enough (say n = N) this expression is smaller than o/3. For each n we
now define T, as

T, = inf {t

I(K"+ M), 2 n® or |(K"-S)| = n} :

. 1 .
If we now define the integrand L" = — K" 1y, 1,; we obtain that
n

(i) L"- M are local martingales 52
(i) QL(L"M)* =2 n] =2 Q[(K"M)* Zn*] — Q[(K"-S)* = n] = 8« —= e

foralln=> N .
(iii) L"+ M is constant after T,.

1
(iv) The jumps of L"-S are bounded from below by — n:; . Indeed the

process (K"+ S)™ are bounded above by n on [0, T, [. Its value is always bigger
than — 1 and hence jumps of (K" S)"* are bounded from below by — (n + 1).

34 .
V) (L M)*|l 2 En+ | AL M) |12 S 0 + = The last inequality fol-

A
lows from Corollary 2.4 and the inequality [[(L"* S)* .2 < p 2

The local martingale L"+ M is therefore an L?(Q) martingale. For each
n we define a sequence of stopping times (7, ;), » . We start with T, o = 0 and
put (eventually the value is + o)

Tn,i =lnf{t|t g Tn,i—l and I(L".M)t = (L"'M)T

ni—1

|2 1}.
We then may estimate
I (L"- M)T,,‘i —(L"- M)T,,‘,»_‘ ”L’(Q)
S 1+ AL M)z, N2

§1+i—§§1+a§2 forall n>N.

Let k, be the integer part of%a. We claim thatfori=1, ..., k,andalln > N,

we have Q[ T, ; < o] > 6a. An inequality of this type is suggested by the fact
that the variables f, ; = (L"* M), — (L"- M), _, are bounded by 2 in L*(Q) but
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their sum has to be large, so we need many of them. To prove that for each
i <k, we have Q[T, ; < oo ] > 6a, it is of course sufficient to prove that
Q[T < 0] =Q[I(L"*M)r,, —(L"-M)r,, | 2 1] > 6a.
Put B = {T,, < oo} and estimate, for n = N, the L*(Q) norm of (L"* M )* 1
(L™ M)* 1pe || 12(q)

=

M»

(L"Yyr,, 7,0 M)* 1

]
—

L*(Q)

lIA
M=

L Yyr,, 10" M)* e || 2@

oo
—-

I(L"yr,, \ 1” M)* || L2q)

I\

IIA
s
Ms =

I
-

I(L"yr,, . 7,3" M) l2q)  (by Doob’s inequality)

IIA
N

=

lIA
=
IS

Tchebychev’s inequality now yields Q[ (L"* M)* 15 = n] < o which implies
Q[Bn{(L"-M)* = n}] < o*> < o and hence

Q[B]1z Q[L"-M)* 2z n] — Q[Bn{(L"M)* 2 n}] > Ta — o = 6a .

For n=N and i=1,...,k, the random variables f,; are bounded in
L?>(Q)-norm by 2 but in L°(Q) they satisfy the lower bound
Q| fn.il 2 1] > 60 This will allow us to obtain a lower L°(Q) estimate for f,;.
Let f = o? and B, ; = {f,.; = o}. We will show that Q[B, ;] > f.

The martingale property implies that

E )
Eq[fnil =Eolfnil= _Qsz"ﬁ =3

o.

Therefore as f,; is bounded by « outside B, ;:

Eo[fnils, 12 Eqlfnil — 0> 2a.
On the other hand the Cauchy-Schwarz inequality gives

Eol fridls, 1=l fuillzgQIBnil'? £2Q[B, 1> .

Both inequalities show that Q[B, ;] > «* = .

We now turn to L"+ A. Because L"+S = L"*M + L"- A and we know that
L"+S is small and the negative parts of L"- M are big, we can deduce that
positive parts in L"- A are also big. Let us formalise this idea: from the
definition of A we infer that for all i

24
| (L"- S)T,,,, — (L S)T,,,_, [l L*(Q) = F .
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Tchebychev’s inequality implies

22 24\? n? _
QI:|(L"‘S)T",.*(L"'S)Tn_...|%7:I§<?> %=n 2.

Because Q[((L"-M);, —(L"*M)y, )" Za] > we necessarily have
24
Ql:(L"-A)TM — (L"A),  Za— 7] > B — n~? and this holds for all i <k,

and n = N.
We will now construct a strategy that allows us to take profit of these k,
positive differences. The process L"+ A is of bounded variation. The Hahn
decomposition of this measure, see the discussion preceding Definition 2.7,
produces a partition of R, x Q in two predictable sets B", and B" on which
this measure is respectively positive and negative. The processes (L"1p, = A)
and (— L"1g»+A) are therefore increasing. Let R" be the process
L"1ps o1,
The process (R"+ 4) = (L"1p ~[o,7,, 1" A) satisfies
(R"-A)r,, — (R Ay, , 2 (L" A)r,, — (L" A)r,

and we therefore obtain

Q[(R"'A)r,_, —(R" Ay, Z2a— 2%i| >p—n?

fori=1,...,k,andalln=>N .

Unfortunately we do not know that R" is 1-admissible or even admissible.
A final stopping time argument and some estimates will allow us to control
the “admissibility” of R". The jumps of R"- S are part of the jumps of L"+ S and
hence

AR™S) = AL"-S) = —

n+12_g.
- n

An upper bound for (R"- M) is obtained by
IR M)y, I
<@ M)y, I
ke
< 2 I filig -
i=1

Forn = N this is smaller than 4k,. Doob’s maximal inequality applied on the
L?(Q)-martingale (R"+ M)Tn+, yields

sup|(R"- M),|

t=z0

<4./k,.

L -

This inequality will show that R"+ S will not become too negative on big sets.
First note that we may estimate (R"+ S) from below by R"+ M. Indeed, R"* S =
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R"-M + R"-A = R"-M since R"+ A is increasing and hence positive. The
following estimates hold

Q[inf (R"-S), < —k,,n‘”“}

t20

= Q[SUP |(R" M)| = k..n_”“]

t20

§16\/;

ky

by Tchebychev’s inequality and the above estimate

1
<640——.
n

Let now U, = inf{t|(R"*S), < — k,n~'/*}. The preceding inequality says that

1 1
Q[U, < 0] £64a _n We define yet another integrand: let V" = k_n R"1po,y,3-

nk,

The jumps of V"+ S are then bounded from below by and the process (V"+S)

; 2 .
is therefore bounded below by — n~ /4 — o The integrands V" are therefore

n

admissible and their uniform lower bound tend to zero. We now claim that
(V"-S),, is positive with high probability.

22
From Q[(R"'A)TM —(R"A)r, ,Za— 7] >B—n"? and from the
Corollary A1.3 we deduce that

Q[(R"'A)T,.k g%(a 2’1>(/3 - n"z)] BT

T n 2

It follows that

kammrkz%}—%}w—n”q>ﬁ“;ﬂ—oua<mﬂ or

n. z_4 N AL P
Q|:(V AM%(z*;)(ﬁ—" ):|> 5 640!ﬁ-

A
Since (% — H)(ﬁ —n"?)tends to y = oc_zﬁ we obtain that for n large enough,

sayn= N’

QDV“AMQ§]>§-
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Letusnowlook at (V":8), =(V"*M), + (V" A),. The first term (V" M),
tends to zero in L?(Q). Indeed

1 1
V" M) |l L2 §k_||(R"'M)T,,k Iz £2—=—0.

~

The second term satisfies Q[(V"- Ay > %] > g

Tchebychev’s inequality therefore implies that for n large enough, say
n = N" we have

Q[(V"'S)w >3] P Q[(R"'M)T >3] >f

4 (=4 k458"
The functions g, = (V" 8S), have their negative parts going to zero in the
norm of L®. This is a contradiction to Corollary 3.7. |

The next step in the proof is to obtain convex combinations
L"e conv(H"; n = 1) so that the local martingales L"+- M converge in the
semi-martingale topology. If we knew that the elements H" - M were bounded
in L?(Q) then we could proceed as follows: by taking convex combinations the
elements H" can be replaced by elements L" such that L"+ M converge in the
L?*(Q) topology, whence in the semi-martingale topology. Afterwards we then
should concentrate on the processes L"* A. Unfortunately we do not dispose
of such an L?(Q)-bound but only a L°-bound and a slightly more precise
information given by the preceding lemma. It suggests that we should stop the
local martingales H" - M when they cross the level ¢ > 0, apply Corollary 2.4
to control the final jumps in L?(Q) and apply some L*-argument on the so
obtained L2-bounded martingales. Afterwards we should take care of the
remaining parts and let ¢ tend to oco. Again the idea is simpler than the
technique. Let us introduce the following sequence of stopping times (c is
supposed to be > 0).

T? =inf{t||(H"+ M),| = c}. The local martingales (H" - M) will be stopped

at T? causing an error K!+M where K} = H"l]]”’ ol

Lemma 4.8. For all ¢ > 0, there is co > 0 such that for arbitrary n, for all
convex weights (A, . .., A,) and all ¢ = ¢y, we have

(£ weae) ] <

Proof. Suppose on the contrary that there is o > 0 such that for all ¢, there are
convex weights (44, . .., 4,) and ¢ = ¢y, such that

Q[(l_i /L-Kf;'M)* > a]>a.

From this we will deduce the existence of a sequence of 1-admissible integ-
rands L" such that sup, || (L"*S)* || .2 is bounded and such that (L"+ M)* is
unbounded in L°(Q). This will contradict Lemma 4.7.
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Let N be large enough so that Q[q>N]<% (remember g =

sup, sup,|(H"+ 8),|). This is easy since ¢ is finite a.s. If we define 7 as the
stopping time

© = inf{t|for some n = 1:|(H"+S),| > N}

we trivially have Q[r < o0] < %. From Lemma 4.7, applied with
A =sup, [[(H"*S)*|2q, we deduce that Ilim.,,sup,Q[T; < o] =
lim,, , sup, Q[(H"*M)* 2] =0.For0 < d < %, let ¢; be chosen so that for
all n and all ¢ = ¢; we have Q[T" < o] < 6% For each n we have
1K 2 S)* Lo = I2(H" ¥ Ly e oo 2y
£2)gllpQIT: < ]2
If follows that there is ¢, so that for all n and all ¢ = ¢,

IKE-S)* L2y £ 0 -

For ¢ =2 max(cy, ¢,) take 4, . .. 4, a convex combination that guarantees

n * n
Q[(Z /1,~K£-M> >a]>oc and let a=inf{t| <Z i,K;'-M)'goc}.
i=1 i=1 1

Put K = (Z?:l AK{) lﬂo,minn,a)]]-
3 . .
Clearly Q[(K-M)*=Za]>a—Q[t< o] = Toc and the inequality

(K+S)* < Y| A(Ki-S)* implies [|(K * S)* |2 < 0. Let us now investigate
whether K is admissible.

(K-S), = Ai 1{; > T ((Hi° ) (Hi * S)min(T;‘ng))
=

n

YAl py(=1=N)

i=1

1\%

2 -(N+1) Y Al gy
i=1

g —(N+1)F,

where F is the process F = )"7_, 411y, o . F is an increasing adapted left

continuous process, it is therefore predictable. By construction E¢[F,, ] < 6°
and therefore Q[F,, > 0] < ¢. This implies that the stopping time v defined as

v =inf {t|F, > 0} satisfies
Qv< w]<d<a/4.
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This implies that K’ = K1y, ,; satisfies
1K' 8$)*|| ) = 6 and

QLK *M)* > o] > —Q[r< 0] — Qv < ) g% as well as
(K'-S)= —(N +1)o.
The integrand L° = ——K,— therefore is 1-admissible and
g TN+ 1o
LS i < = )-
PQ=AN+1
Furthermore Q| (L°+ M)* > M2
(N + 1)o 2°
For ¢ tending to zero this produces the desired contradiction to
Lemma 4.7. O

The following lemma relates, in the L° topology, the maximal function of
a local martingale with the maximal function of a stochastic integral for an
integrand that is bounded by 1. The proof uses the fact that the sequence
(H"+ M), is a sequence of local L*-martingales with uniform L2-control of
the jumps.

Lemma 4.9 With the same notation as in Lemma 4.8, for all ¢ > 0 there is
¢o > 0 such that for all h predictable |h| < 1, all convex weights (4. . . A,) and

all ¢ =z ¢y
o[((vgm) -]

In particular D (Z 2;K!- M) < 2¢ where D is the quasi-norm introduced in Sect.
2 and inducing the semi-martingale topology.

Proof. Let ¢ > 0 and take ¢, as in Lemma 4.8 i.e.
QLY AKIM)* >e]l<e
for all (4; . . . A,) convex combination and all ¢ = ¢,. By enlarging ¢, we also

may suppose that sup, || (KZ+S)* || .xq) §—§ (see the proof of the Lemma 4.8).

Corollary 2.4 now implies that for all n and every stopping time o
| A(KE- M), L2 S € -

Take now h predictable and bounded by 1, take ¢ = c¢, 4; . .. 4, a convex

combination. Define o as
( ¥ l,-(K,f.'-M),)\>s}.
i=1

a=irif{t|
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The following estimate holds:

(£ skt )

The L2-norm of the left hand side is therefore smaller than 2¢ and we have an
L*-martingale. This implies that the martingale (h) 4;Ki)1 ;- M is in L?
and its norm is smaller than 2¢. Hence

sup
t<o

Se+ ) AlAKe-M),] .

QL((h Y LK M)* > /e]
S QLAY 4K 104 M)* > /] + Q[0 < 0]

82
S—+e=35¢. O
€
Lemma 4.10 There is a sequence of convex combinations L" € conv(H* k = n)
such that (L"- M) converges in the semi-martingale topology.

. 1
Proof. We use the notation introduced before Lemma 4.8. For ¢ = ~ we apply

Lemma 4.9 to find ¢, such that

m . 1
D<<Z iiK§">-M> < - for all convex weights Ay ... A, .

=1

For each n and each k we have (Hkluo, T M)* < ¢, + |A(H*- M)7+| and an
application of Corollary 2.4 yields that each H* Lo ey M is an L?(Q)-

martingale with bound ¢, + 3|/q|.2q). A standard diagonalisation argument
shows that existence of convex weights A5, A%, .. . Ak, such that

N
Y=Y AH* - M
j=0

is, for each n, converging in the space of L*(Q) martingales. An easy
way to prove this assertion, is via the following reasoning in Hilbert
spaces.

Let .#* be the Hilbert space of L*(Q) martingales and let $ = (3 @ .#?),:
be its /*-sum (see Diestel (1975)). An element of this space is a sequence
X =(X,), where each X, is in .#2. This space is also a Hilbert space when
equipped with the norm | X |> =) _ [ X,|3. The sequence X*, defined by
the co-ordinates -

Xf= ! (H*17y 747+ M)
"2+ 314l T

is bounded in the Hilbert space $ and hence there are convex combinations
Y*e conv(X* X**1 ...) that converge with respect to the norm of $. It
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follows that each “co-ordinate” converges in .42 This implies the existence of
convex weights 45, Af, . . . Ay, such that

YE= S ke 1,1 M
j=0
is, for each n, converging in the space of L?(Q) martingales.

The sequence L* = Z:’; o MH*"I-M is now a Cauchy sequence in the
space of semi-martingales. Indeed for given ¢ > 0 take N such that% <e& We
find that for k, [

D((L*—L"-M)

<D(Yy—Yy) +D< > /lijf;f'-M) + D< > Aj.Kg;f.M)
- “

ji=1
SD(YF—YR)+ 2.
For k and [ large enough this is smaller than 3e. O

Lemma 4.11 The sequence (L") > of Lemma 4.10 is such that (L*- A) con-
verges in the semi-martingale topology.

Proof. We know that L*-S > — 1 and that (L*- M) converges in the semi-
martingale topology. To show that (L*- 4) converges in the semi-martingale
topology we have to prove that for each t=0 the total variation
j; |d((L* — L™)- A)| converges to 0 in probability as k and m tend to oo. We
will show the stronger statement that j: |d((L¥ — L™)- A)| tend to 0 in
probability as k and m tend to oco. If this were not the case then by the Hahn
decomposition, described in Sect. 2, we could find h* predictable with values
in { +1, —1}, « >0 and two increasing sequences (ix,ji)k>1 such that
Q[ > o] > o where

= [ hid((L*—L*)-A),

[0, o

= [ KLy — Li)dA,
[0, )

= [ |L¥—Li|dA, .
[0, oof
We now define the integrand R* as
R¥ = (L* + % (1 + h*(L* — L")
=4 (L* + L* + h*(L* — L") .

The idea is simple if #* = 1i.e.if (L* — L*).d4 = 0 we take L if i* = — 11i.e.
if (L* — L*)dA < 0 we take L*. In some sense R* takes the best of both. The
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processes (R* — L*)- 4 and (R* — L*). A define positive measures and are
therefore increasing. Indeed

(R¥ — L")« A = (L* — L*) + 3 (1 + B)(L" — L") A
(B — 1)(L* — L*))- A and
(B + 1)(L* — L*)- A .

=1
=2

(R*—L¥).A=1%
Both measures are positive by the construction of h*. Also

@i = (R¥ — L% A)y, + (R* — L") A).

2
interchange i, and j, and take subsequences to keep them increasing). Because
(R* — L*)- M =+ ((h* — 1)(L* — L*)- M) and because (L* — L")- M tend to
zero in the semi-martingale topology on [0, co) we deduce that the maximal
functions ((R* — L*)- M)* tend to zero in probability. The same holds for
((R¥ — L#*)- M)*. Let now (d,)x =1 be a sequence of strictly positive numbers
tending to 0. By taking subsequences and by the above observation we may
suppose that Q[((R* — L%). M)* > §, or ((R* — L*)- M)* > 6,] < d, holds
for all k. This implies that the stopping time 7, defined as
1 = inf {t|(R*- M), £ max((L*- M),, (L*- M),) — 3,} satisfies Q[ < o0] < &.
Define now R¥ = R*1jg ). We claim that the integrands R* are (1 + &)
admissible!
For t < 1, we have

(R*-S), = (R*-S),
= (R*- A), + (R*- M),
max ((L*- A),, (L*- A),) + (R*- M),
max (L A),, (L* - A),) + max((L*- M),, (L*- M),) — 3,
max ((L¥- S),, (L*+ S),) — J;
] — By

At time 7, the jump A(R*.S) is either A(L*-S) or A(L’*-S) and hence
(R*-S),, = — 1 — 0, because the left limit of (Rk-S) at 7, is at least
max ((L*+ 8),,_, (L*+8),_) — 6.

The integrands (1 + 6,)" ' R* are l-admissible. We will use them to
construct a contradiction to the maximal property of fo = lim,_ o, (L*+S),, =

lim,, - o (H™* S) -
RF .
.S — L.
(rrars-ts),

I S
= —_— ). o~ l".S
g (R = 19 9) 5 W),

We may therefore suppose that Q [((R" — L% A4), > E] > %(if necessary we

A2\ |\

1\
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1 ~ .
= (m)(mk —L%)-A4), +

1 Dk A J i
Ték((R — L%)- M), 1+5k(L “8)e -

This first term is estimated from below

Q[((ﬁ"—L‘*)-A)w>g]>% and ((R* — Li)- A), >0 .

The second term is estimated from above
Q[((R*—L%-M), < —8]1<6 and ((R*¥—L%-M),—0.

The third term tends to zero since 6, — 0. From Lemma Al.l1 we know
that there are convex combinations V*e conv(R¥ R¥*!...) such that
(V*.S),, will converge to a function g. Because (L*:S), — f, and because
Ql:((ﬁ" — L#%).8), > % - (5k] > % — & we deduce from Lemma A3.1 that
Q[g > fo]>0. Also g = f;, a contradiction to the construction of f;. O

Final part of the proof of Theorem 4.2 From Lemmas 4.11 and 4.12 we deduce
the existence of 1-admissible integrands L* e conv(H*, H**!, . ..) such that
L¥.M and L*. A both converge in the semi-martingale topology. The se-
quence (L*-S), > is therefore convergent in the semi-martingale topology.
Memin’s theorem (see Memin (1980)) now implies the existence of a predict-
able process L such that L¥-S — L-S in the semi-martingale topology. In
particular L is 1-admissible and the final value satisfies
(L+S)p = lim (L-S), = lim lim (L"-S),

t— oo t— o0 n—

= lim lim (L"-8), = lim (L"-S), =/, .

n—ow t— o

The interchange of the limits is allowed because almost surely (L"- S), — (L - S),
uniformly in ¢, by Lemma 4.5. Indeed (H" - S), converge uniformly on R, and

the convex combinations L*e conv(H* H**!, ...) preserve this uniform
convergence. This shows that f, € K, and as remarked before Lemma 4.5 this
implies Theorem 4.2. O

Remark. The topology of semi-martingales was defined in Sect. 2. It was
defined using the open end interval [0, co). A similar but stronger topology
could have been defined using the time interval [0, co]. This amounts to using
the distance function:

D(X) = sup {E[min(|(H - X),|, 1)]|H predictable, |H| <1} .

The difference between the two topologies is comparable to the difference
between uniform convergence on compact sets of [0, oo) and uniform con-
vergence on [0, co]. A careful inspection of the proofs, mainly devoted to
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checking the existence of the limits at oo, shows that the semi-martingales
(L"-S) tend to (L - S) in the semi-martingale topology on [0, oo ] and not only
on [0, o). We preferred not to use this approach in order to keep the proofs
easier.

5 The set of representing measures

In this section we use the results obtained in Ansel and Stricker (1992)
“Couverture des actifs contingents” and we give a new criterion under which
the market is complete. Throughout this paragraph the process S is supposed
to be locally bounded and to be a local martingale under the measure P. This
will facilitate the notation. We will study the following sets of “representing
measures” defined on the sigma algebra &, (see e.g. Delbaen (1992) for an
explanation concerning the name “representing measures”):

M(P) = {Q|Q < P, Q is g-additive and § is a Q-local martingale}
Me¢(P) = {Q|Q ~ P, Q is g-additive and S is a Q-local martingale} .

The space M(P) consists of all absolutely continuous local martingale
measures and it can happen that some of the elements will give a measure zero
to events that under the original measure are supposed to have a strictly
positive probability to occur. This phenomenon was studied in detail in
Delbaen (1992). We will show that M*(P) = M (P) implies M(P) = {P}.

We will need the following set of attainable assets:

WO = { f|there is an S-integrable H, H-S bounded and (H - S) =F¥,

The set W © is a subspace of L*. There is no problem in this notation since if
H-S is bounded, then H as well as (— H) is admissible and therefore
f=(H-S), exists and is a bounded random variable. From Proposition 3.5 it
follows that W © = K n( — K). The same notation for a space related to W ° is
already used in Delbaen (1992). The set W is simply {a + fleeR and
f € W°}. Because S is supposed to be locally bounded these vector spaces are
quite big. The following lemma seems to be obvious but, because unbounded
S-integrable processes are used, it is not so trivial as one might suspect. The
proof we give uses rather heavy material but it saves place.

Lemma 5.1 If H is S-integrable and H-S is bounded, then H-S is a Q-
martingale for all Q € M(P).

Proof. Take Q € M(P). Clearly S is a special semi-martingale under the
measure Q. Since it is a local martingale it decomposes as § = S + 0. The
stochastic integral H - S is bounded and hence is a special martingale under Q.
Its decomposition is, according to Theorem 2.2, H-S = H - S+H-0,ie. H-S
is a Q-local martingale. Being bounded it is a martingale under Q. O

It follows from the martingale property that if H and G are two S-integrable
processes such that H-S and G-S are bounded and such that
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(H-8)% =(G-S), then necessarily (H-S) = (G-S). (This also follows from
arbitrage considerations.).

The following theorem is due to Ansel and Stricker (1992) and Jacka
(1992). Earlier versions can be found in Pagées (1987) and in Karatzas et al.
(1991). The theorem is particularly important in the setting of incomplete
markets (e.g. semi-martingales with more than one equivalent martingale
measure). It shows exactly what elements can be constructed or hedged, using
admissible strategies.

Theorem 5.2 If f € L°(Q, #, P) withf ~ € L*(Q, %, P) then the following are
equivalent
(1) there is H predictable, S-integrable, Q € M°(P) and o € R such that H- S is
a Q-uniformly integrable martingale with f = o + (H - S),,
(ii) there is Q € M°(P) such that Ex[ f] < Eq[f] for all R e M*(P).
For f bounded these two properties are also equivalent to
(i) Eg[f] is constant as a function of R € M(P).

Proof. We refer to Ansel and Stricker (1992, Théoréme 3.2). For (iii) we
remark that M¢(P) is L'(P) dense in M(P) and hence Ex[ f] is constant on
M¢(P) if and only if it is constant on M(P). O

Corollary 5.3 W is o(L®, L") closed in L.

Proof. This follows immediately from (iii) of the theorem. W is the subspace of
these elements in L*® that are constant on a subset of L!. O

Remark. The corollary was known long before Theorem 5.2 was known. The
earliest versions of it are due to Yor (1978). Contrary to intuition, the
boundedness condition needed in (iii) of Theorem 5.2 cannot be relaxed to
f being a member of L (R) for each R in M*(P). A counterexample can be
found in Schachermayer (1993b). O

The next theorem is a new criterion for the completeness of the market.

Theorem 5.4 If S is locally bounded and P is a local martingale measure for S,
then

(i) M(P) is a closed convex bounded set of L*(Q, %, P)

(i) M(P) = M*(P) implies that M (P) = {P}.

Proof. (i) We only have to show that M(P) is closed. Take Q, a sequence in
M (P) and suppose that Q, converges to Q. Take T a stopping time such that
ST is bounded. If t <s and A4 € %, then we can see that: E¢[S,1,] =
lim Eq, [SF1,]=1lim Eq, (sr,]= Eq [SF1,]. This proves Q € M(P).

(i) If M(P) = M¢(P) then M¢(P) is a closed, bounded, convex set. The
Bishop-Phelps theorem, see Diestel (1975), states that the set G of elements f of
L>*(2, #,P) that attain their supremum on M¢(P), is a norm dense set in
L>(Q, &, P). The preceding theorem, part (ii), states that G is a subset of W.
Since W is weak* closed it is certainly norm closed. Since W is closed and G is
dense for the norm topology we obtain W = L*(Q, &, P). By the Hahn-
Banach theorem, two distinct elements of L' can be separated by an element
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of L* i.e. by an element of W. However elements of W are constant on M (P).
This implies that M(P) = {P}. O

As we remarked in the introduction our results remain true for R%valued
processes. The same holds for Theorem 5.4. As the example of Artzner and
Heath (1990) shows, Theorem 5.4 is no longer true for an infinite number of
assets. The example uses the set {0, 1} as time set, but as easily seen and stated
in Artzner and Heath (1990) it is easy to transform the example into a setting
with continuous time.

In Delbaen (1992) the following identity was proved for a continuous
process S. For every f € L™:

sup Eq[f]=inf{x|thereis he W° with x + h = f} .

QeM(P)

In the general case this equality becomes false as the following example in
discrete time shows. The left hand side of the equality is always dominated by
the right hand side. The example shows that a “gap” is possible. Some further
properties displayed by Example 5.5 are: W° is weak*-closed but the set
W ° — L% is not even norm closed. We will also see that the norm closure and
the weak* closure of W ° — L? are different.

Example 5.5 The set Q is the set N = {1,2,3,...} of natural numbers. The
o-algebra &, is the g-algebra generated by the atoms {k} for k < 3n and the
atom 3n+1,3n+2,...}. So=0and S, — S,—, is defined as the variable
g.3(n —1)+1)=n;9,3(n — 1) + 2) = 1; g,(3n) = — 1. The process S is not
bounded but a normalisation of the functions g, allows us to replace S by
a bounded process. To keep the notation simple we prefer to continue with the
locally bounded process S given above. For the measure P we choose any
measure that gives a strictly positive mass to all natural numbers and such
that for all n we have Ep[g,] = 0. The space W © is precisely the set:

{ Y. angal(nay)y =1 is bounded} .

nx1

Take now for f the function defined as
forallnz1:fBn—1)+1)=0;, fBmn—1)+2)=1 and f(3n)=0.

From the description of W it follows that for hin W ° and x € R the random
variable x + h can only dominate f if x = 1. The constant function 1 clearly
dominates f. This shows that

inf{x|there is he WO withx + h> f} =1.

On the other hand if Q is a local martingale measure for S then
nQ[3(n— 1)+ 11+ Q[3(n — 1) + 2] = Q[3n] implies that Q[3(n — 1) + 2] <
12Q[{3(n — 1) + 1,3(n — 1) + 2, 3n} ], with strict inequality if Q is equivalent
to P. Therefore Eq[ /] < 1/2 with strict inequality for Q in M¢(P). If we
take any measure Q such that Q[3(n — 1)+ 1] =0and Q[3(n— 1)+ 2] = Q[3n]
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then Q is in M(P) and Eo[f]=1/2. It is now clear that maxqgemp
Eol/1=122.

This example also shows that in Theorem 5.2(ii), the condition Q € M¢(P)
may not be replaced by the condition Q € M(P). Referring to the proof in
Delbaen (1992, Lemma 5.7), we remark that in this example the function fis not in
12+ W% — L% but it is in the weak* closure of it. To see this let f, be the
function defined as f,(3(k — 1) + 2) = 1 for all k < n and 0 elsewhere. The func-
tions f, are smaller than 1/2 + }°"_ (3 gi) and thereforearein 1/2 + W° — LY,

they converge weak* to f. The set W° — LY is not even norm closed as the
0

following reasoning shows. An element h in W° — L7 is of the form
Zn > 1 GnGn — k where kisin LY and |n.a,|is bounded, say by m. If a,, is positive

thenh(3(n — 1) + 2) £ a,g9, < % and if a, is negative then h(3(n — 1) + 2) £ 0.
In any case h(3(n —1)+2) < %1 Take now the function p defined as

1 —1 .
pBn—1)+1)=0,pBnrn—-1)+2)= 7 and p(3n) = —=. It is easy to see
n n
that p is in the norm closure of W © — L% but it cannot be in W ° — LY since
the converge of p(3(n — 1) + 2) to 0 is too slow. This reasoning also shows
that the element f, described above, cannot be in the norm closure of the set
x + W°— L% for any x < 1. O

To remedy this “gap” phenomenon, well known in infinite dimensional
linear programming, we will use another set to calculate the infimum. The set
we will use is precisely the set C introduced in Sects. 2, 3 and 4. In Sect. 4,
Theorem 4.2, it is proved that C is weak* closed in L. In the case of processes
which are not necessarily continuous, C is the exact substitute for the set
W?° — L%, so useful in the continuous case. The polar C° of the cone C is by
definition

C°={glgeL'E[gh] <0 forall hin C} .
Theorem 5.6

MP)={Q|QeL'Q[Q] =1and QeC°} .

Proof. If Q is in M(P) then for H admissible we know by Theorem 2.9 that
H - S is a Q-supermartingale. Therefore Eq [#] < 0 for every h in C. Converse-
ly let Q be in L', of norm 1 and Q € C°. The set — L7 is a subset of C and
hence every element of C° is in L), . Therefore Q is a probability measure. If
T is a stopping time and ST is bounded then the random variables
a(ST —SM)1, for u>t, o real and 4 in %, are in C and hence Q is a local
martingale measure for S. O

The following theorem is the precise form of the duality equality stated
above. We will prove it for bounded functions, referring to a forthcoming
paper of Ansel for the case of measurable functions with bounded negative
parts.
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Theorem 5.7 For every fin L™ we have

sup Eq[f]= sup Eq[f]
Qe M(P) QeM(P)

= inf{x|there ishe C withx + h = f}
= inf{ x|there is he C withx + h=f} .

Proof. From the definition of C it follows that x + h = f for hin C if and only
if there is h in C with f= x + h. The second equality is therefore obvious.
From the preceding theorem it follows that

sup Eqo[f] <inf{x|thereis he C withx + h=f} .
Qe M(P)

If z <inf{x|thereis h e C with x + h = f} then f — z is not an element of the
weak* closed cone C. By the Hahn-Banach theorem there is a signed measure
QeL', Eq[h] <0forall hin C and Eq[ f— z] > 0. The preceding theorem
shows that Q can normalise as Q[22] = 1 and then it is in M (P). It follows that
z < Eq[f] < supremp) Er[f]. This shows that

sup Eqo[f]=inf{x|thereis he C with x + h=f} . a
Qe M(P)

Remark 5.9 The infimum is a minimum since C is weak* and hence norm
closed.

Remark 5.10 Let us recall that the dual of L* is ba(Q2, &, P), the space
of all bounded, finitely additive measures on the sigma-algebra &, abso-
lutely continuous with respect to P. We can try to define the set of all finitely
additive measures that can be considered as local martingale measures
for S. It is not immediately clear how this can be done in a canonical
way. But, if we define M, (P) = {Q|Q € ba, Q[Q] =1, Eq[h] <0 for all h
in C}, then it is easy to see, via the equality in Theorem 5.8, that M(P) is
o(ba, L) dense in M,,(P). In other words M,,(P) is the o(L*, L) closure
of M(P) in the space ba(Q2, &, P), the dual of L™. This is of course the good
definition of M,,(P). We remark that the set C has to be used and not just the
set W°. Indeed the Example 5.5 shows that the set M(P) is not necessarily
o(ba, L*) dense in the set {Q|Q finitely additive, positive, Q[£] = 1 and
Eq[h] = Oforall hin W °}. To see this, we observe that the function f defined
in Example 5.5 is not in the norm closure of x + W° — L% for any x < 1. By
the Hahn-Banach theorem there is a finitely additive positive probability
Q such that Eo[f]=1 and Eo¢[h] =0 for all h in WP°. Because
supgeme) Eq[f] = 1/2 this element Q cannot be in the o(ba, L) closure of
the set M(P). This suggests that the “good” definition of such finitely
additive measures should use the inequality Eq[h] < 0 for all #in C and not
only for all hin W° — L%.
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6 No free lunch with bounded risk

In this section we will compare the property of no free lunch with vanishing
risk (NFLVR) with the previously used property of no free lunch with
bounded risk (NFLBR). This property was used in a series of papers: Mc Beth
(1992), Delbaen (1992) and Schachermayer (1993). The property (NFLBR) is
a generalisation of the property (NFLVR). To define this property we need
some more notation. By C we denoted the closure of C with respect to the
norm topology of L, by C* we will denote the weak* closure of C. The set
C is the set of all limits of weak* converging sequences of elements of C.
Although the fact that a convex set in L™ is weak* closed if and only if it is
sequentially closed for the weak* topology, the closure of a convex set cannot
necessarily be obtained by taking all limits of sequences. (In Banach’s book
(1932) (Annexe théoréme 1), one can find for each k, examples of convex sets
such that after k iterations of taking weak* limits of sequences, the weak*
closure is not obtained but after k + 1 iterations the closure is found.)
Therefore in general, there is a difference between C* and C and the use of nets
is essential to find the weak* closure of C.

Definition 6.1 If S is a semi-martingale then we say that S satisfies the property
(i) no free lunch with bounded risk (NFLBR) if Cn L% = {0}
(ii) no free lunch (NFL) if C*n L7 = {0}.

From the definitions and the results of Sect. 3 it follows that (NFL) implies
(NFLBR) implies (NFLVR) implies (NA). As regards the notion of no free
lunch (NFL), this was introduced by Kreps (1981) and is at the basis of
subsequent work on the topic. It requires that there should not exist f, in LY,
not identically 0, as well as a net ( f,), of elements in C such that f, converges to
foin the weak* topology of L”. Because nets are used, there is no bound on the
negative part f,~ of f,. It is not excluded that e.g. || f,” ||, tends to oo, reflecting
the enormous amount of risk taken by the agent. It is well known that for
bounded cadlag adapted processes S, (NFL) (even when defined by simple
strategies) is equivalent to the existence of an equivalent martingale measure.
ii) See Schachermayer (1993) for a proof of this theorem which is essentially
due to Kreps (1981) and Yan (1980). The drawback of this theorem is twofold.
First it is stated in terms of nets, a highly non intuitive concept. Second it
involves the use of very risky positions. The main theorem of the present paper
remedies this drawback. We therefore focus attention on variants of the
properties (NFLVR). The following characterisation, the proof of which is
almost the same as the proof of Proposition 3.6 and Corollary 3.7, was proved
in Schachermayer (1993). The proof makes essential use of the Banach-
Steinhaus theorem on the boundedness of weak* convergent sequences.

Proposition 6.2 The semi-martingale S satisfies the condition (NFLBR) if and
only if for a sequence of 1-admissible integrands (H"), > with final values
gn = (H"+ 8), the condition g, — 0 in probability implies that g, tends to 0 in
probability.
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Proof. Suppose that S satisfies the property (NFLBR) and let (H"), > be
a sequence of 1-admissible integrands (H"), » | with final values g, = (H"- S),,
such that g, — 0 in probability. Suppose that this sequence does not tend to
0 in probability. By selecting a subsequence, still denoted by (g,), > 1 we may
suppose that there is « > 0 such that P[g, > a] > o for all n. By Lemma Al.1
we may take convex combinations f, € conv(g,; k = n) that converge in prob-
ability to a function f. The negative parts f,~ still tend to 0 in probability and
hence f: 2 — [0, oo]. The function f satisfies P[ f> 0] > 0. The functions
h, = min(f,, 1) are in the convex set C and converge in probability to
h = min( f, 1). The functions h, are uniformly bounded by 1 and therefore the
convergence in probability implies the convergence in the weak* topology of
L*. The function h is therefore in C and the property (NFLBR) now implies
that h = 0 almost everywhere. This however is a contradiction to P[ f > 0] > 0.

Suppose conversely that S satisfies the announced property. It is clear that
S satisfies the no arbitrage property (NA). Suppose now that £, is a sequence
in C that converge weak* to h. We have to prove that h = 0 almost everywhere.
By the Banach-Steinhaus property on weak* bounded sets, the sequence h, is
uniformly bounded. Without loss of generality we may suppose that it is
uniformly bounded by 1 and hence h, = — 1 almost surely. Since the sequence
h, tends to h weak* in L* it certainly converges weakly to h in L2 Therefore
there is a sequence of convex combinations g, € conv (h; k = n) that converges
to hin L? and therefore in probability. The sequence g, is bigger than — 1 and
by the no arbitrage property g, is the final value of 1-admissible integrands H,,
(see Proposition 3.5). The property of S now says that h = 0. O

The difference between (NFLVR) and (NFLBR) is now clear. In the no free
lunch with vanishing risk property we deal with sequences such that the
negative parts tend to O uniformly. In the no free lunch with bounded risk
property we only require these negative parts to tend to 0 in probability and
remain uniformly bounded!

If the case of an infinite time horizon the set K, was defined using general
admissible integrands. The infinite time horizon and especially strategies that
require action until the very end, are not easy to interpret. It would be more
acceptable if we could limit the properties (NFLBR) and (NFLVR) to be
defined with integrands having bounded support. The following proposition
remedies this. (We recall as already stated in the remark following Corollary
3.4 that an integrand H is of bounded support if H is zero outside a stochastic
interval [0, k] for some real number k.

Proposition 6.3 (1) If the semi-martingale S satisfies (NFLBR) for integrands
with bounded support, then it satisfies (NA) for general admissible integrands.

(2) If the semi-martingale S satisfies (NFLVR) for integrands with bounded
support and (NA) for general integrands, then it satisfies NFLVR) for general
integrands.

Proof. We start with the remark that if S satisfies (NFLVR) for integ-
rands with bounded support then from Theorem 3.3 it follows that for each
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admissible H, the limit (H-S),, = lim,_ ., (H-S), exists and is finite almost
everywhere. We now show (1) of the proposition. Let g = (H - S),,, for H 1-ad-
missible and suppose that g > 0 almost everywhere. Let g, = (H - S),. Clearly
g, tends to O in probability and each g, is the result of a 1-admissible
integrand with bounded support. The property (NFLBR) for integrands with
bounded support shows that g > 0 implies that g = 0. The semi-martingale
therefore satisfies (NA) for admissible integrands.

We now turn to (2) of the proposition. Let g, = (H"- S),, with H" admiss-
ible, be a sequence such that the sequence g, tends to 0 in L*-norm. Because
the process S satisfies (NA) it follows from Proposition 3.5 that each H" is
Il 9. || ,-admissible. For each n we take t, big enough so that h, = (H"- S),, is

1
close to g, in probability, e.g. such that E[min(|h, — g,|, 1)] £ m Since each

hy, is the result of a |/g, | ,-admissible integrand with bounded support, the
property (NFLVR) for integrands with bounded support implies that h, tends
to 0 in probability. As a result we obtain that also g, tends to 0 in probability.

d

The Proposition 6.3 allows us to obtain a sharpening of the main theorem of
Schachermayer (1993, Theorem 1.6). We leave the economic interpretation to
the reader.

Proposition 6.4 Let (S,), be a locally bounded adapted stochastic process for the
discrete time filtration (%,),. If there does not exist an equivalent local martin-
gale measure for S then at least one of the following two conditions must hold:

(1) S fails (NA) for general admissible integrands, i.e. there is an admissible
integrand H such that (H-S),, = 0 a.s. and P[(H-S), > 0] > 0.

(2) S fails (NFLVR) for elementary integrals, i.e. there is a sequence (H,,), of
elementary integrals such that (H,-S)= —n~! and (H,-S), tends almost
surely to a function f: W — [0, co] with P[ f> 0] > 0.

Proof. For discrete time processes, elementary integrands and general integ-
rands with bounded support are the same. Therefore if S satisfies both
conditions (1) and (2), then by Proposition 6.3, S also satisfies (NFLVR) for
general integrands. The main Theorem 1.1 now asserts that S admits an
equivalent local martingale measure. The proposition is the contraposition of
this statement. O

The following example shows that in general the no free lunch with vanishing
risk property for admissible integrands with bounded support does not imply
the no free lunch with vanishing risk property for general admissible integ-
rands! As Proposition 6.3 indicates there should be arbitrage for general
integrands.

Example 6.5 We give the example in discrete time. The extension to continu-
ous time processes is obvious. The set Q is the compact space of all sequences
of —1or +1: { =1, + 1}™. The sigma-algebra’s %, of the filtration are
defined as the smallest sigma-algebra’s making the first n co-ordinates
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measurable. On Q we put two measures P and Q. The measure P is defined as
the Haar measure, this is the only measure such that the co-ordinates r, are
a sequence of independent, identically distributed variables with
P[r, = + 1] = 1/2. The measure Q is defined as 4(P + J,), where J, is the
Dirac measure giving all its mass to the element a, the sequence identically 1.
Define f as the variable f = — 15 + 10\ (a). Clearly Eq[ f] = 0. Define now
the process S, by S, = Eo[ f|%,]. The sigma-algebra’s ., of the filtration are
defined as the smallest sigma-algebra’s making the Sy, . . . , S, measurable, i.e.
the natural filtration of S. The sigma-algebra & is generated by the sequence
(S,)n- It is easy to see that on #, S admits only one equivalent martingale
measure, namely Q. We will now consider the process S under the measure P.
On each sigma-algebra &, the two measures, P and Q, are equivalent.
Suppose now that H" is a sequence of boundedly supported predictable

. -1

integrands such that g, = (H"-S),, = - almost everywhere for the measure

P. For each n there is k, big enough such that g, is measurable for #,.
—1 . . .

Therefore also Q [ gn = —n—] = 1 for each n. Since Q is a martingale measure

for S it follows that Eq[g,] = 0 and that the sequence (g,), > 1 tends to 0 in
L'(Q). Therefore the sequence (g,),=1 tends to O in probability for the
measure Q. Because P is absolutely continuous with respect to Q we deduce
that g, tends to 0 in probability for the probability P. This implies that
S satisfies the (NFLVR)-property for integrands with bounded support. Be-
cause Q is the only martingale measure for S and because Q is not absolutely
continuous with respect to P, the process S cannot satisfy the no free lunch
with vanishing risk property for general integrands (Theorem 1.1). In fact,
precisely as predicted in Proposition 6.4, there is already arbitrage if general
integrands are allowed! Take e.g. H the predictable process identically one.
Because S, =0, we have H-S =S and H is therefore admissible. Now
S, tends to f for the probability Q and hence S, tends to 1, (4) for the measure
P, ie. tends to the constant function 1 for the probability P. The process
S does not satisfy (NA) for general integrands.

7 Simple integrands

In this section we investigate the consequences of the no-free-lunch like
properties when defined with simple integrands. It turns out that there is
a relation between the semi-martingale property and the no free lunch with
vanishing risk (NFLVR) property for simple integrands. For continuous
processes we are able to strengthen Theorem 1.1 and the main theorem of
Delbaen (1992).

Definition 7.1 A simple predictable integrand is a linear combination of pro-
cesses of the form H = f 1yr 7,1 where f is ¢, measurable and T, and T,
are finite stopping times with respect to the filtration (%) er,)- (see also
Protter (1990).) The expression ‘elementary predictable integrand’ is reserved
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Jfor processes of the same kind but with the restriction that the stopping times are
deterministic times.

Simple predictable integrands seem to be the easiest strategies an investor can
use. The integrand H =f 1jr, 7, corresponds to buying f units at time
T, and selling them at time T',. The requirement that only stopping times and
predictable integrands are used reflects the fact that only information avail-
able from the past can be used. The interpretation of simple integrands is
therefore straightforward. The use of general integrands however seems more
difficult to interpret and their use can be questioned in economic models. It is
therefore reasonable to investigate how far one can go in requiring the
integrands to be simple.

As pointed out in Sect. 2, we can define the concepts such as no arbitrage,

. with the extra restriction that the integrands are simple. In the case of
simple integrands, stochastic integrals are defined for adapted processes. In
this section we therefore suppose that S is a cadlag adapted process. The
following theorem shows that the condition of no free lunch with vanishing
risk for simple integrands, already implies that S is a semi-martingale. In
particular this theorem shows that in the main Theorem 1.1, the hypothesis
that the price process is a semi-martingale is not a big restriction. The theorem
is a version of Theorem 8 in Ansel and Stricker (1993). The proof follows the
same lines but control in L? norm is replaced by other means. The theorem
only uses conditions that are invariant under the equivalent changes of
measure. The context of the following theorem is therefore more natural than
the same theorem stated in an L?-environment. We however pay a price by
requiring the process S to be locally bounded. A counterexample will show
that the local boundedness cannot be dropped.

Theorem 7.2 Let S:R, x Q: — R be an adapted cadlag process. If S is locally
bounded and satisfies the no free lunch with vanishing risk property for simple
integrands, then S is a semi-martingale.

The proof requires some intermediate results that have their own merit. Since
S is locally bounded there is an increasing sequence of stopping times (t,), > 1
such that each stopped process S™ is bounded and 7, — oo a.s. To prove that
S is a semi-martingale it is sufficient to prove that each S* is a semi-
martingale. We therefore may and do suppose that S is bounded. To simplify
notation we suppose that |S| < 1. In the following lemmas it is always
assumed that S satisfies (NFLVR) for simple integrands.

Lemma 7.3 Under the assumptions of Theorem 7.2, let # be a family of simple
predictable integrands each bounded by 1, i.e. |[H (w)| < 1 for all t and w € Q. If

{sup (H-S), |He 7/} is bounded in L°, then

0=t

{ sup (H-S)" |He # } is also bounded in L° .

0=t
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Proof. Suppose that the set {sup,<,(H-S),"|H € #} is not bounded in L°.
This implies the existence of a sequence ¢, - oo, H" € # and ¢ > 0 such that
P[supy<,(H-S)," > c,] > & Take K such that P[supy<,(H-S), < — K]
< ¢/2 for all n and all H € # and define the stopping times

Ty =inf{t|(H"-S) 2 c,} ,
U,=inf{t|(H"-S),< — K} .

Clearly (H"-S), =2 — K — 2 on [0, U,] since each H" is bounded by 1 and
|S] =< 1. Take T, = min(T,, U,) and observe that

P[(H"-S)r,2c,, sup (H"-S), =K+2]=¢/2.
0<t<T,
Take now d, — 0 so that d,c, » oo and remark that
(@) (0, H"10,1,1*S) < 6,(K +2)
(b) fu=(0,H"1]0, 1,1+ )., satisfies P[ f, = d,c,] = ¢/2.

By Lemma Al.l there are g, econv(f,,f,+...) such that g, — g ae.
where g:Q - [0, co]. Also P[g>0]>0.1f g, =A8f, + ...+ Al f,+ is the
convex combination, let us put K" = AgH" + . . . + A H"** Clearly

(@) [(K"+S). | —0 and

(b) (K"-8)s — g:Q — [0, oo].
Since P[g > 0] >0, this is a contradiction to (NFLVR) with simple
integrands. [

Lemma 7.4 The set
4 ={ Y St = St)IOSTo ST £ ... £Tpy < 0 stopping times}
k=0

is bounded in L°.

Proof. For0<STo<T;< ... <T,+; < o stopping times put:

H=-23% St Y1, 7,,,]-
k=0

Because |S| < 1 we have that H is bounded by 2. Also

(H-8)w = Y (St,,, — S1,)> — S%,., + 83, and hence
k=0
(H-S),, 2 — 1. The same calculation applied to the sequence of stop-
ping times min(Ty,¢?),..., min(T,,t) yields (H-S),= — 1 and therefore
supo<,(H+S), = 1. The preceding lemma now implies that % is bounded
in L2, a

Proof of Theorem 7.2 We have to show that if H" is a sequence of simple
predictable processes such that H" —0 uniformly over R, x, then
(H"-S),, — 0 in probability. By the Bichteler-Dellacherie theorem this implies
the classical definition of a semi-martingale. (In Protter (1990) this property is
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used as the definition of a semi-martingale). It is of course, sufficient to show
that the sequence (H"-S),, is bounded in L°. If this were not true then there
would exist a subsequence of simple integrands, still denoted by (H"), » 1, such
that

(a) H" — 0 uniformly over R, x Q;

(b) P[(H"-S),, 2n] 2¢>0.

(c) Each H" can be written as

N,
H" = Z fz IHTk"’T:+l]]
k=0

where 0 < Ty < ... <Ty,+1 < o0 are stopping times and the functions
f% are 1 measurable functions, bounded by 1.
For each n we put {} the process defined as

& =Y (S, —Sm)*,

where the summation is done over the set of indices k =0, . . ., N, such that
Ti. St

Since by the preceding lemma % is bounded in L°, there is ¢ >0
such that P[{% = ¢] < ¢/2. Let for each n the stopping time T, be defined as
T, =inf{t|{; = c}. This definition implies that T, takes values in the set
{To,...,Ty+y, o} and is a stopping time with respect to the discrete time
filtration (F7rs)k=o,... N, +1. The bound (r;<c+4 (since |S|=1) and
P[T, < o] < ¢/2 are straightforward. Take now K" = H" 1}, r;] and ob-
serve that P[(K"-S), = n] = ¢/2.

Each discrete time, stopped, process (Smin(Ty,7/))k=0,...,N, + 1 1S nOW de-
composed according to the discrete time Doob decomposition:

Aty — ATy = E[Smin(ry, . 72) — Smin(ry, )| F17]

k+10%n
n n
M, — Mr1; = (Smin(rz, . T;) — Smin(T7,T7)

— E[(Smin(ry, . 7)) = Smin(ry, 7)) | F17]

(M"T;)k —0,..,N,+11s now a martingale bounded in L2. Indeed

N,
E[(MT;,)*]1= Y, E[(MT;,, — M1;)*]1+ E[(MT1;)*]

N'I
< Y E[(Smin(ry,,,72) — Smin(rz,7))> 1 + E[(Smin(rz,7)*]
k=0

<E[Ch)P]+1Sc+5.

For each t we put M} = E[M"T;;"H | #,] and we take a cadlag version of this
martingale. Because of the optional sampling theorem this definition coincides
with the previously given construction of M} for times ¢t = T, . In the definition
of H" we now replace each f} by fi = f& sign(AT;,, — Atp). The functions
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f& are still measurable with respect to the sigma-algebra Frs. The resulting
process is denoted by K" i.e.

Na ~
- ¥ ety re.
Since |[K"| <1 we still have
E[(R"-M"r; )1<c+5.
On the other hand
(K"-S),, = (IZ"'S)TI;"H

N,
=(K"-M)r; . Z |fell ATy, — ATyl

N,
2 (K"-M)r; Z (f&)(ATy,, — ATy)

= (K"-M)ry,

Because the sequences (K"- M)T» and (K" M)Tn are bounded in L? and
the sequence (K" - S)J is unbounded in L°, the sequence (K"-S),, is necessarily
unbounded in L°. On the other hand sup, ., (K"-S), is a bounded sequence
in L°. Indeed for t = T we have

+ (K" 8)y — (K"« M)p2

Np+1 °

(K"-8)r; < (K"~ M)7; < sup [(R"- M), | .

0=t

And for T} £t < T}, , we find:

(K"-S)" < (R"-S)ry + | f211S, — Stz < 2 + sup (K"~ M),|

0=t
and hence
sup (K"-8), || <2+ |[sup(K"- M),
0=t 2 0=t 2

<2+ 2|(K" M),
£2+42/c+5 (by Doob’s maximum inequality) .

This proves the boundedness in L°. From Lemma 2.3 it now follows
that (K"-S)," is bounded in L°. This contradicts the choice of the sequence
K" O

The following example shows that the requirement that S is locally
bounded cannot be dropped. The same notation will also be used in a later
example.

Example 7.5 We suppose that on a probability space (2, &, P) the following
sequences of variables are defined: a sequence (y,), > | of Gaussian normalised
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(0, 1) variables, a sequence (¢,), > 1 of random variables with distribution
P[¢,=1]=2""and P[¢, =0] =1 — 27" All these variables are supposed
to be independent. The countable set of rationals in the interval 0, 1[ is
enumerated as (q,), » 1- Because Z P[¢, = 1] < oo the Borel-Cantelli lemma
tells us that for almost all w € Q there are only a finite number of natural
numbers n such that ¢, = 1.

The stochastic process X defined as

X, = Z ¢n}'n
ng, =t

is therefore right continuous, even piecewise constant (by the above Borel-
Cantelli argument). The natural filtration generated by this process is there-
fore right continuous (see Protter (1990), p. 16, Theorem 25 for a proof
that can be adapted to this case) and so is the filtration augmented with the
negligible sets. The filtration so constructed therefore satisfies the usual
conditions.

Take now F:[0, 1] — R a continuous function of unbounded variation,

. (1 . ; .
e.g. F(t) =tsin <;> Let now S, = X, + F(t). It is easy to verify that X is an

L*-martingale and hence it is a semi-martingale. If S were a semi-martingale
then F would also be a semi-martingale. This however implies that F is of
bounded variation. We conclude that S is not a semi-martingale. We will now
show that S satisfies the (NFL) property for simple integrands. This certainly
implies that S satisfies the (NFLVR) property for simple integrands and it
shows that the local boundedness condition in Theorem 7.2 is not superfluous.
To verify the (NFL) property with simple integrands let us start with an
integrand H = f1j7,7 where T < T' are two stopping times and f is
Fr measurable. We will show that H - S is not uniformly bounded from below
unless H = 0. Suppose on the contrary that P[{T < T’} n{f> 0}] > 0 (the
case {f> 0} is similar). Take ¢ real and g, rational such that t <g, and
P[{f>0}n{T <t}n{q, < T'}]>0. Because f is F measurable, t < g,
and T’ is a stopping time we obtain that A={f>0}n{T <tjn
{g. £ T'} € #,_ and hence is independent of ¢,y,. Because ¢,y, is un-
bounded from below (and from above for the other similar case) we obtain
that P[AN{¢,y, < — K}]> 0 for all K > 0. It is now easy to see that this
implies that H-S is unbounded from below. It also follows that the only
simple integrand H for which H-S is bounded from below is the zero
integrand. Since there are no admissible simple integrands, the (NFL) prop-
erty with simple integrands is trivially satisfied! O

Theorem 7.2 and the main Theorem 1.1 allow us to strengthen the main
theorem in Delbaen (1992). The theorem shows that in the case of con-
tinuous price processes and finite horizon, the condition (d) in Delbaen (1992),
an equivalent form of the no free lunch with bounded risk for simple integ-
rands, can be relaxed. The case of infinite horizon is already treated in
Example 6.5. By using the techniques developed in Schachermayer (1993b)
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one can translate this example into an example where S is a continuous
process.

Theorem 7.6 (a) If S:[0, 1] x Q: > R is an adapted continuous process, then
the condition no free lunch with vanishing risk (NFLVR) for simple integrands
implies the existence of an equivalent local martingale measure.

(b) If S:R, x Q: - R is an adapted continuous process then the condition
no free lunch with bounded risk (NFLBR) for simple integrands implies the
existence of an equivalent local martingale measure.

Proof. Because the process S satisfies the condition no free lunch with vanish-
ing risk (NFLVR) for simple integrands, it follows from Theorem 7.2 that § is
a semi-martingale. General stochastic integrals can now be used. Let H" be
a sequence of general ¢,-admissible integrands where ¢, tends to 0 and let
g, = (H"-S);. We have to prove that g, tends to 0 in probability, which will
prove part (a) in view of the main Theorem 1.1. From the theory of stochastic
integration (see Chou et al. 1980) we deduce that there are simple integrands
L"such that P[supo<, < |(L"-S), — (H"-S),| = ¢,] < &,. For each n we define
the stopping time T, as inf{¢|(L"-S), < — 2¢,}. Clearly P[T, < 1] Ze,.
Since the process S is continuous, the random variables h, = (L"-S)y, are
bounded below by — 2¢, and are therefore results of 2¢,-admissible simple
integrands. Because P[T,<1]<s¢, and P[supo<,<[(L"-S), — (H"-S5),
> ¢,] < &,, the sequence h, — g, tends to 0 in probability. From the property
no free lunch with vanishing risk (NFLVR) for simple integrands we deduce
that h, and hence g, tend to 0 in probability. Therefore the property no free
lunch with vanishing risk property (NFLVR) is satisfied and by the main
Theorem 1.1 there is an equivalent martingale measure.

For the second part we refer to Schachermayer ((1993), Sect. S, Proposi-
tion 5.1). O

The above theorem seems to indicate that for continuous processes simple
integrands are sufficient to describe no arbitrage conditions. This is not true in
general. The Bes?(1) process, (R,) < < 1, gives a counterexample. This process
can be seen as the Euclidean norm of a three dimensional Brownian motion
starting at the point (1,0, 0) of R It plays a major role in the theory of
continuous martingales and Brownian motion, see Revuz and Yor (1991) for
details. The process R satisfies the no arbitrage (NA) property for simple
integrands but fails the no arbitrage (NA) property for general integrands. We
refer to our forthcoming paper Delbaen and Schachermayer (1993b) for the
details. The inverse of this process, L = R~ ', a local martingale, has been used
by Delbaen and Schachermayer (1993).

As a general question one might ask whether for continuous processes the
no arbitrage (NA) property for general integrands is sufficient for the existence
of an equivalent local martingale measure. The following example shows that
this is not true.

Example 7.7 We take a standard Wiener process W with its natural filtra-
tion (%,)o <. < 1. Before we define the price process S, we first define a local
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martingale of exponential type by:

L,=exp<~(f-W), —%(if’(u)du)) ift<1 and
0

L1=0
1

where f'is the deterministic function defined as f(t) =

We define the stopping time T as T = inf {¢|L, = 2}. The stopped process
L™ is a bounded martingale starting at zero. Clearly Ly =2 if T <1 and
equals 0 if T = 0. Therefore P[T < 2] = 1/2. We now define the price process
by its differential

s, =dw, +

1
dt ift<T and
J1—=t
ds, =0, ift=>T.

The filtration is now defined as (#)o < < 1 = (F min¢, 7))o < < 1- Except for sets
of measure zero, this is also the natural filtration of the process S and of the
stopped Wiener process W 7. All local martingales with respect to this filtra-
tion are stochastic integrals with respect to the Wiener process (stopped at T')
(see Revuz and Yor (1991), p. 187, Theorem 4.2 and stop all the local martin-
gales at the stopping time T'). Girsanov’s formula therefore implies that the
only probability measure Q, absolutely continuous with respect to P and for
which S is a local martingale, is precisely the measure Q defined through its
density on &, as dQ = L dP. As we shall see, S satisfies the property of no
arbitrage (NA). Important in the proof of this, is the fact that for t < 1, the
measures Q and P are equivalent on %, (the density L] is strictly positive).
Because the process S is continuous the proof that S satisfies (NA) reduces to
verifying the statement that for H admissible, (H-S); cannot be almost
everywhere positive without being zero a.s. Take H admissible and suppose
that (H-S); = 0, P a.s. This certainly implies that (H-S); = 0, Q a.s. Because
S is a continuous Q-local martingale, we know that H-S is a continuous
Q-local martingale and because H is admissible for Q, Q being absolutely
continuous with respect to P, H-S is a Q-supermartingale. From this it
follows that Eq[(H - S), ] < 0 and by positivity of (H - S),, this in turn implies
that (H-S); =0, Q a.s. Under the probability Q, the process S is a local
martingale and hence satisfies (NA) with respect to Q! For each ¢ > 0, let now
V be the stopping time defined as inf {¢|(H-S), =¢}. The integrand
K =(1jo,vH) is clearly admissible and (K -S); =0 on {V = 1}, whereas on
{V < 1} the outcome is ¢, i.e. strictly positive. The (NA) property for S (under
Q!) implies that Q[ V < 1] = 0. In other words the process H - S never exceeds
¢ Q as. This implies (H-S), £0, Q as. for all ¢t < 1. Because Q and P are
equivalent on &, for t < 1, this is the same as (H-S), < 0, P a.s. for all t < 1.
From this and the continuity of the process (H - S) we deduce that (H-S); £ 0,
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P as. This in turn implies that (H-S); =0, P as. The process S therefore
satisfies (NA) under the probability P. O

We now give some more examples motivating the introduction of gen-
eral integrands. As seen in the above theorems and examples, the case
of continuous processes can essentially be reduced to simple integrands.
The following examples show that for general semi-martingales the no
free lunch with bounded risk (NFLBR) property for simple integrands
is not sufficient to imply the existence of an equivalent local martingale
measure.

The examples are very similar in nature; the problems arise from the fact
that the jumps do not occur at an increasing sequence (T',), » 1 of predictable
stopping times (a case already solved in Schachermayer (1993)). In our
examples the jumps occur at an increasing sequence of accessible stopping
times, similarly as in Example 7.5. The first example of this kind is an
unbounded process but it contains all the ingredients and the general idea.
The second example of this kind gives a bounded process. Of course the price
to pay is the use of more technique.

Example 7.8 The first example uses the process X introduced in Example 7.5.
The semi-martingale S we will need is defined as S, = X, + t. The process S is
now a special semi-martingale and again if H is simple predictable with H-§
bounded from below then H = 0. Therefore S trivially satisfies the no free
lunch (NFL) property with simple integrands. If however we put
H = 150,17\ Q) x ¢ (sell before each rational and buy back immediately after it)
we have (H-S), =t (for 0 <t £ 1) and this violates (NA) for general integ-
rands. If Q were an equivalent local martingale measure for the process S, then
because H = 1([0,17\qQ)x ¢ is bounded, H-S is also a local martingale (see
Protter 1990, p. 142, Theorem 2.9). This is absurd. O

The previous example has at least one disadvantage: the process S is
unbounded. The next example overcomes this problem. This time we
will work with a doubly indexed sequence of Rademacher variables
(Fn.m)n = 1.m = 1 1.€. variables with distribution P[r, , = 1] =P[r,m = — 1] =
1/2, and with a doubly indexed sequence of variables (¢, m)y > 1,m > 1 With the
property P[¢, »=11=2"""" and P[¢, ,=0]=1—-2""""_ We also
need a sequence of Brownian motions W " starting at 0. All these variables
and processes are supposed to be independent. The rationals in ]0, I[
are again enumerated as (g,), 1. We first define the L? martingales Y™
as:

th= Z ¢n,mrn,m .

g, st

The Borel-Cantelli implies, as in Example 7.5, that each Y™ is piecewise
constant. We define the stopping time T, as:

T, = min(inf{t| |[W™ =mor Y +0}, 1).
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We make the crucial observation that

P[T,,,<1]§P|: sup Ith|>m:|+ Z 2= (n+m

0sts1 m= 1

= \/éle""z/2 +2™m
nm

and hence ) P[T, < 1] < co. This implies, via the Borel-Cantelli lemma,
that for almost all w € Q, T,,(w) becomes eventually 1.
The process Z™ is now defined as

Z'=Y"+ oan(W"+m?t) fort<T,
=Y +au(WP +m*T,) forT,<t<1.
The sequence a,, will be chosen later, but will satisfy 0 < a,, < 1.

The process Z™ is clearly bounded by 1 + (m + m?)a,, < 1 + m + m>.
Finally we define

8, =4Z! for0st=1
=Sm_1 +2_lem_(m_1) fOI‘ m — 1 été’n .

The process S is cadlag and |S| < Zmzl 271 +m+ m?)a, < 24. It is
a semi-martingale with decomposition S = M + A, where A4 is given by the
recurrence relations

Ap-1+i— Ap-1=2""a,,m*t fort<T, and
A,,,_1+,—A,,,_1=2—"'0(,,,m2Tm for ngtél ,

The martingale M is uniformly bounded on each interval [0, m].

With respect to its natural filtration, augmented with the zero sets, S is
a special semi-martingale and the filtration satisfies the usual assumptions.
The last statement is not trivial to verify but it follows from the same property
of the filtration of the Brownian motion.

Lemma 7.9 For each sequence (0,)n=1 in ]0,1], the process S fails the
equivalent (local) martingale property.

Proof. Consider the sequence (H™),, > | defined as
H™ =0, 'm™ 22" Lgm— 1 m)\Q)x @ -
Each H™ is a deterministic process, hence predictable. The process (H™- S) is uni-

1
formly bounded from below by — 1 and ((H™-S),,)n > 1 €quals % WL + Thw

= Tm - i
m
Because T,, = 1 for m big enough we see that (H™-S),, tends to 1 for
mtending to oo. This cléarly violates (NFLVR). Because of the main Theorem

1.1 we see that S cannot have an equivalent martingale measure. O
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Lemma 7.10 If (o) > 1 is a sequence in ]0, 1] such that a,, — 0 fast enough,
then S satisfies (NFLBR) for simple integrands.
(By fast enough we mean that for all m, we have:

Y, 2 imie, < fr:" where B, = exp(— 3 mp)) .
0

m>mg

Proof. For each m natural number, we know that the process S™, i.e. S stop-
ped at m, admits an equivalent martingale measure Q,,. Indeed we can use
a Girsanow transformation to find an equivalent martingale measure such
that for k fixed, the process (W} + k*t)y <, <1 stopped at T, is a martingale.
The density of this measure is given by exp(0W §, — 5 6> T},) where 6 = — k2.
This density is bounded above by exp(k?) and below by exp( — k* — 4 k*).
The density of Q, on %, is therefore bounded below by
exp(— Y o=, (k* +3k*)) = exp(—2m®) and bounded above by
exp(} ;= k*) £ exp(m*). Under the measure Q,, the process S™ is a martin-
gale and hence for each H that is 1-admissible, H - S™ is a Q,,-supermartingale
(by Theorem 2.9) and hence for each 1-admissible integrand we find

Eq,[(H-S)n]1<Eq,[(H-S),] and hence
exp(—2m*)Ep[(H-S), ] S exp(m*)Ep[(H-S), ] and
Ep[(H-S)n]2Z BuEp[(H-S)m] for f, = exp(—3m’).

We will show that if «,, — 0 as announced, the process S satisfies (NFLBR)
with simple integrands.
Suppose on the contrary that S does not satisfy the (NFLBR) property for

simple integrands. We then choose H’ simple, predictable, 1-admissible such
that (H’-S), tends to f, =0 where P[f, >0]>0. Find m, so that

2
Ep[min( fo, 1)]>m—. For each j we define the stopping time U; as
0

inf{¢|(H’-S), 2 1} and let L’ = H' 1} y,). For each j the simple predictable
process L’ is still 1-admissible and (L’-S),, = min((H’-S),, 1), therefore
liminf; . (L7+S),, = min(fo, 1). Each L’ is of the form Y i_, filjy, .nJ
where f, is %, measurable and Vo<V, < ... £V, < oo are stopping
times.

If[Vioy, Vi]n]m —1,m — 1 + T,] is not equivalent to the zero process,
then the probability of a jump between V) _, and V, is strictly positive by the
same arguments as in Example 7.5. Because the jumps of S are positive or
negative with the same probability we conclude that the downward jump of
(L. S) cannot be smaller than — 2. (Indeed the process is always bigger than

— 1 and is stopped when it hits the level 1). We conclude that also the positive
jump is bounded by 2. Therefore ILJ}MASTMI < 2. We conclude that
ILi|<2™*'on]m —1,m — 1 + T,,]. Because we stopped the process (L/- S)
when it exceeds the level 1, we see that:

min((Lj' S)m’ 1) - min((Lj'S)m—la 1) é (LJ'S)m - (Lj' S)m—l .
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The process L’ is bounded in intervals [0, m] and because S is also uni-
formly bounded with only one jump in each interval [k, k + 1], the semi-
martingale L’-S is locally bounded, therefore spec1al and decomposed as
L’.S=L'-M + L. A. The local martingale part is a square integrable mar-
tingale and hence:

Ep[(L'- M), — (L' M), ] =0.
This yields the following estimates:
Ep[min((L+S),, 1) — min((L?+ S),- 1, 1)]
SEp[(L-S)y — (L7 S)m-1]
SEp[(LV A — (L A)p 1]

< Ep[ 1] L,{ammzdu:I

Jm—1,m]
= 'm?a,, .
This implies that

Ep[min((L’+ S)n,, 1)] 2 Ep[min((L'-5),,, D] = Y 2" 'm?a,

m>mg

2 Ep[min((L-8),, 1)] - B—"'

(by the choice of a,,) .
Because

. 2
liminf Ep [min((L’: S),, 1)] > o~ we can deduce that

Jj—* 0

2
lim inf Ep [min((L? - S),,, 1)] > — B, >—
J-'oo mo 2m0 mo

1
We may now suppose that Ep [min((L’- *S)my» 1)] > — for all j. Because of the

choice of ,, we also see that

E,[min((L'- S);, 1)]
2 BuEslmin((L/+S), 1] 2 By [min (L), )] > L2 ﬁ'" .

Let the set A; be defined as 4; = {(L’- S),,, < 0}.
Because liminf;._, , min((L’- S),, 1) = min( fp, 1) we also have that

liminf(1,,, min((L’- S)., 1)) 2 liminf(1,, min(fo, 1)) .
j= o j—= oo
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An application of Fatou’s lemma yields that

Ep[lim inf(1,, min(fo, 1)):|

J=®

< Ep[lim inf 1,, min((L’+ $), 1)]

j— oo

< liminfEp[1, min((L’-S), 1)]

Jj—= oo

< liminfEp[1, min((L’+S)n,, 1]

Jj=

+ Y. Ep[min((L'-S), 1) — min((L’+S)n-1, 1)]

m>mg
< —ﬁﬂ+ Y, 2" im?a,,
Mo m>mg
< L
= 2myg
This is clearly a contradiction to fo = 0. O

Appendix 1: Some measure theoretical lemmas

In this appendix we prove two lemmas we used at several places. We assume
that, especially regarding the second lemma, the results are known, but we
could not find a reference. We therefore give full proofs and we also add some
remarks that are of independent interest but are not used elsewhere in this
paper. The first lemma was already proved in Schachermayer (1992, Lemma
3.5). We give a similar but simpler proof.

Lemma Al.1 Let (f,),> 1 be a sequence of [0, oo [ valued measurable functions
on a probability space (2, &, P). There is a sequence g, € conv(fu,fus1, --.)
such that (g,), = 1 converges almost surely to a [0, oo] valued function g.

If conv( f,; n = 1) is bounded in L°, then g is finite almost surely. If there are
o >0 and 6 > 0 such that for all n:P[ f, > o] > 0, then P[g > 0] > 0.

Proof. Letu:R, u{ + oo} — [0, 1] be defined as u(x) = 1 — e~ *. Economists
may see u as a utility function but there is no need to. Define s, as

Sp = Sup{E[u(g)]lg GConV(f,,,f;H,l 30 e )}
and choose g, e conv(f,, fy+1,...) so that

1
E[u(gn)] g Sp — ; g

Clearly s, decreases to s, = 0 and lim, ., E[u(g,)] = so. We shall show that
the sequence (g,), > 1 converges in probability to a function g. We will work
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with the compact (metrisable) space [0, oo ]. A sequence (x,,), > 1 of elements of
[0, o] is a Cauchy sequence in [0, oo] if and only if for each o > 0 there is
no so that for all n, m 2 n, we have |x, — x,,| < a or min(x,, x,,) = «~*. From
the properties of u it also follows that for o > 0 there is f >0, so that
+y

[x — y| > o and min(x, y) < «~ !, implies u(x ) > $(u(x) + u(y)) + p.

We can now easily proceed with the proof of the lemma. By the observa-
tion on the topology of [0, oo ] we have to show that lim,, -, Pllg, — gml >«
and min(g,, g,) <a '] =0.

For given o > 0 we take § as above and we obtain

E[u(%iﬂ 2 E[u(g)] +4 Elg,]
+ ﬁP[Ign —gml > o and min (gm gm) < ahl] 0

. nt Gm ;
By construction E[u (ng>] < s,, but by concavity of u we have

E[u(—g—;—g>] >} (Eu(g.)] + E[u(gn)])

From this it follows

ﬂP[lgn - gml > o and min(gm gm) < a_l:]

< E[u(g" “; “’)] — H(E[u(g,)] + E[u(gm)]) -

The choice of the sequence (g,), > ; implies that the right hand side tends to 0.
We therefore proved that (g,), > 1 is a Cauchy sequence in probability and hence
there is a function g: Q — [0, c0] so that g, converges to g in probability. If one
wants a sequence converging almost surely one can pass to a subsequence.

If conv(f,; n = 1) is bounded in L° then for each ¢ > 0 there is N so that
P[h> N] <e¢ for all heconv(f,;n=1). In particular this implies that
P[g,> N] <& and hence P[g > N] <e. The function g so obtained is
therefore finite almost surely.

IfP[ f, > ] > ¢ > 0 for each n and fixed « > 0, we obtain that Elu(g,)] =
du(x) > 0. Since g, tends to g we find u(g,) - u(g) and by the bounded
convergence theorem we obtain E[u(g)] = du(x) >0 and therefore
P[g>0]>0. ) a

Remark 1 1f (f,),> 1 1s a sequence of [0, oo ] valued measurable functions then
the same conclusion can be obtained. The proof is the same up to minor
changes in the notation. The reader can convince himself that there is almost
no gain in generality.

Remark 2 1f ( f,), > 1 is a sequence of R-valued measurable functions such that
conv(f, ;n = 1) is bounded in L°, then there are g, € conv(f,; n = 1) so that
gn converges almost surely toa ] — oo, + oo ] valued measurable function g.
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Proof. We first take convex combinations of {f,;n =1} that converge
almost surely. Since conv {f, ;n = 1} is bounded in L°, the limit is finite
almost surely. We now apply the lemma to the same convex combination of
f+ . This procedure yields convex combinations of the original sequence
(fw)n = 1, converging almost surely to a ] — oo, + oo ] valued function. [

Remark 3 1f in Remark 2 we only require that { f,";n = 1} is bounded in L°
then the conclusion breaks down. Indeed take ( f,), >1 a sequence of 1-stable
(see Loeve 1978 for a definition) independent random variables. If there were
convex combinations converging a.s. we could make the convex combinations
so that g, econv(f,, +1,...,f,,,,) where ny <n, <.... This implies that
(9 = 1 1s an independent sequence. Since convex combinations of indepen-
dent l-stable variables are 1-stable this would produce an iid sequence
converging almost surely, a contradiction.

Remark 4 1fin the setting of Lemma A1.1 the sequence { f,, n = 1} is bounded
in LY, but conv(f,; n = 1) is not bounded in L°, then the procedure used in the
proof does not necessarily yield a function g that is finite almost surely. The
next example shows that there is a sequence { f,; n = 1} bounded in L° and
such that every g that is a limit of functions g, econv(f,,fos1,...), is
identically + oo. Before we give the construction let us recall some results
from the theory of Brownian motion (see Revuz and Yor (1991) for de-
tails). If (B;)o<, is a standard 1-dimensional Brownian motion, let us
denote by T the stopping time defined as T = inf{t|B, = f8}. It is known (see
Revuz and Yor, (1991), p. 67) that for g > 0, T,y < oo a.s. and for each u > 0:
E[exp(—uTy)] = exp(— Bﬂ). It follows that if / has the same distribu-
tion as T, then for 4 > 0, Af has the same distributions as Toyrp I fi. . fx
are independent and have the same distribution as Tj,..., T, then
fi + + fv has the same distribution as Ty, . 4, (this follows easily from the
interpretation of f, as the hitting time of f,). Take now ( f,), >1 a sequence of
independent identically distributed variables, each having the same distribu-
tion as T,. Suppose that g, € conv(f,, fy+1, ... )and g, — g a.e. We will show
g = + coae. We can assume that the functions g, are independent, event-
ually we take subsequences. Each g, has a distribution of the form

i+ + A,

where (41,. . ., A} ) is a convex combination. From preceding considerations
it follows that the distribution of g, is T, where «, = Y%, /2 > 1. The 0-1
law gives us that either g = + oo or that P[g < oo ] = 1. In this case we
conclude that there is a real number « such that o, — o > 1 and g has the same
distribution as T,. From the 0-1 law it follows again that the distribution of ¢ is
degenerate, impossible if o > 1. Therefore g = + oo identically. O

The following lemma is quite simple, it was used in the proof of Lemma 4.7.

Lemma A1.2 Let (gi); <k < be non negative functions defined on the probabil-
ity space (£, F,P). Suppose that there are positive numbers (a;); < <n as well
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as 6 >0 so that for every k: P[gy 2 a,] 26> 0. If g =Y'—, g, then for all

o(1 —
0 <n <1 we have P[g = n(} -, a;)d] gf_—ng).
Proof. Let A ={g 2(} -, a;)0n}. Clearly

Efgl,] < ( 5 aj)anP[Af] = ( > a,-)an(l —P[A4])

i=1 j=1

On the other hand

.M=
18]

iP[A°N{g; 2 aj}])
>( Y 4Py 2 a;] —P[A]))

= z": aj>5_<.i a,-)P[A].

Both inequalities imply

(ia,-)P[A]u—én)z( > a,)a‘(l—n).

j=1 ji=1
We may of course suppose that (Z;z 1a;) > 0 and this yields the desired result

o(1 —n)
P[A] ;1—_5”— O

Corollary A1.3 If (g;)i < j < n are non negative functions defined on the probabil-
ity space (2, %, P) and if for j=1,...,n we have P[g; = a] = b where a,

b >0, then for g = ().}, g;) we have P[g z_ﬂzbjl gg.
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