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0. Introduction

Let & be a coherent sheaf on a scheme X. The dual of & is the sheaf #~
=#om(F,0,). If the natural map F—->F~ of F to its double dual is an
isomorphism, we say that & is reflexive.

We use the definition of stability given by Mumford and Takemoto [18]. Let X
be a normal projective variety with a fixed very ample divisor H. For any coherent
sheaf # on X, define u(#)=degc,(#)/rank #. Here c,(#) denotes the first Chern
class of &, considered as an element of the Picard group PicX, and deg denotes its
degree with respect to H. A torsion-free coherent sheaf # is stable if for every
coherent subsheaf #'C % with 0 <rank #' <rank &, the inequality u(#") < u(¥)
holds. If the weaker inequality u(#") < u(F) holds, we say that & is semistable.

This paper begins the study of stable reflexive sheaves (especially those of
rank 2 on IP3) considered as a generalization of stable vector bundles.

There are several reasons for studying reflexive sheaves. The first reason is
natural curiosity. Reflexive sheaves are more general than vector bundles (one
might think of them as “vector bundles with singularities”), yet behave in many
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122 R. Hartshorne

ways like vector bundles. So one can try to extend to reflexive sheaves the results
already known for vector bundles [1, 9]. This turns out to work well, and without
too much difficulty once one has mastered the elementary properties of reflexive
sheaves. Then we can understand vector bundles better by regarding them as-a
special kind of reflexive sheaves.

One of the basic problems in the study of vector bundles is to understand their
variety of moduli. How do reflexive sheaves fit in this problem? One knows [12]
that stable vector bundles with given Chern classes (let us say of rank 2 on IP3, to
fix the ideas) are parametrized by a quasiprojective scheme M, which can be
compactified to a projective scheme M by adding certain semistable torsion free
sheaves. The stable reflexive sheaves do not appear in the closure of the moduli M
of stable vector bundles. Rather, they form new moduli separate from M. The
reason for this, as we will see (2.6), is that for a rank 2 reflexive sheaf # on IP3, the
third Chern class c; is equal to the number of points where & is not locally free.
Now the Chern classes are topological invariants, and a rank 2 vector bundle has
¢, =0. Therefore any stable reflexive sheaf appearing in the closure of the moduli
of vector bundles M would have c¢; =0 and so would be a vector bundle itself.

The second reason for studying reflexive sheaves is that they arise naturally
from vector bundles of higher rank. For example, let & be a rank 3 vector bundle
on IP3, If & is generated by global sections, then a sufficiently general section
se H°(#) will vanish at only finitely many points. In that case there is an exact
sequence

0-058-F -0,

where & is a rank 2 reflexive sheaf. & will be a vector bundle only in the rare case
when ¢,(6)=0. Now we can study & in terms of & and the extension of & by O.

The third reason for studying reflexive sheaves, in particular those of rank 2 on
IP3, relates to the classification of space curves [11]. There is a well known
correspondence between rank 2 vector bundles on P and curves Y in IP* which
are locally complete intersections and have the property w, =~ 0(!) for some leZ
[9, Sect. 1]. The condition wy = O,(!) imposes strong restrictions on the curves Y
which can occur. Using reflexive sheaves instead of vector bundles, we find a
correspondence between rank 2 reflexive sheaves on IP? and arbitrary curves in IP3,
This gives a dictionary between reflexive sheaves and curves, which should provide
applications to the classification of curves.

The fourth and crucial reason for studying reflexive sheaves is that they arise
naturally in the study of rank 2 vector bundles on IP?, and provide a means for
studying the moduli of these vector bundles by an induction on c¢,. For example,
let & be a stable rank 2 vector bundle on IP* with ¢, =0. We say a plane HCIP? is
an unstable plane for & if H%(8yz(—r))+0 for some r>0. The largest such r is the
order of the unstable plane H. Now suppose that & has an unstable plane H of
order r. Choose a section se H%(&y(—r)). This defines a map Op— &Eu(—7).
Dualizing and twisting we get a map &, — Oy(—r), whose image we call £, 4(—7)
for a suitable closed subscheme ZS H. Now map & to £, y(—r) by first restricting
to H, then using the above map on &. Let & be the kernel, so there is an exact
sequence

O—8'—E— 5, x(—1)-0.
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Then & will be a rank 2 reflexive sheaf on IP* with ¢, = — 1. It will be stable if & is
stable. And its second Chern class c), is equal to ¢, —r, which is strictly less than c,.
We call this construction the reduction step [see (5.2) and (9.1)] for & with respect
to the unstable plane H.

Now we can study & in terms of & and the extension of .#; 4(—7) by &". The
reduction step works similarly for bundles with ¢, = —1 and also for reflexive
sheaves. Thus we have an inductive procedure on c, for studying vector bundles or
reflexive sheaves whenever we can establish the existence of an unstable plane. The
existence of unstable planes and use of the reduction step are the main new
techniques which appear in this paper.

One motivation for this work is to attack the conjecture formulated in my
earlier paper [9, 8.2.2]. The conjecture is that if & is a rank 2 vector bundle on P
with ¢, =0 and ¢, >0, and if ¢ is an integer such that ¢t>]/3c,+1 -2, then
H®(&(t)) 0. The conjecture is still unproven, but in this paper (Sect. 10) we show
that it is reasonable to extend the conjecture to reflexive sheaves, and that the
numerical evidence for the conjecture is good. We hope that these same methods
may settle the conjecture in the future.

The paper is organized as follows. Sections 14 contain preliminary material
on reflexive sheaves and their Chern classes. Section 5 contains a key result on the
cohomology of rank 2 vector bundles on P3. The main tool is a reduction step on
IP? similar to the one described above on IP3.

Section 7 contains the central result of the paper. It is a generalization of the
work of Barth and Elencwajg [3]. For any semistable reflexive sheaf we define a
numerical invariant called its spectrum, and we establish various properties of the
spectrum. As corollaries (in Sect. 8) we obtain 1) a vanishing theorem for H'(&())),
for I negative; 2) a vanishing theorem for H2(&(1)), for [ positive ; and 3) a bound for
¢, in terms of ¢, and ¢,. We give examples to show that all these results are the best
possible.

In Sect. 9 we study the extremal bundles and sheaves for which the bounds of
the previous section are sharp. In some cases we can give a fairly complete
description of their properties and variety of moduli.

The last Sect. 10 gives a bound for ¢ such that H%(&()) 40 which is weaker than
the conjectured bound above, but which suffices to prove the conjecture for all
values of ¢, £25.

Throughout the paper we work over an algebraically closed ground field k of
arbitrary characteristic. In particular, we do not use' the theorem of Grauert-
Miilich or Barth’s theorem on the restriction of stable bundles [1], which fail in
characteristic p>0. However we will indicate where some proofs can be shortened
by using those results in characteristic 0.

In a future paper we plan to develop these techniques further, to prove for
example the nonexistence of bundles with certain spectra (7.6.1), the nonexistence
of reflexive sheaves with certain c, (4.2.0), (4.2.3), and to obtain better bounds for
the least ¢ such that H(&(t)) +0.

1 Except in one instance (7.5)
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1. Basic Properties of Reflexive Sheaves

In this section we gather together some basic properties of reflexive sheaves. These
results should be well known, but for lack of adequate references we will include
proofs here. (See [17, II, Sect. 1.1] for analogous results in the analytic case.)
Throughout this section X will denote an integral noetherian scheme. If # is a
coherent sheaf on X, we define the dual of # to be the coherent sheaf &~
= Hom(F,0). There is a natural map of # to its double dual # ™. Since X is an
integral scheme, the stalk of & at the generic point of X is a finite-dimensional
vector space over the function field of X. This vector space is isomorphic to its
double dual. Therefore the kernel and the cokernel of the natural map # —% ™ are
torsion sheaves on X, i.e. they are supported on proper closed subsets of X. In fact
it is easy to see that the kernel of this map is equal to the torsion subsheaf of &.

Definition. A coherent sheaf & on X is reflexive if the natural map & —»% " is an
isomorphism.

For example, any locally free sheaf is reflexive. On the other hand, any reflexive
sheafis torsion-free. So the reflexive sheaves form a wider class than the locally free
sheaves, but are not as general as all torsion-free sheaves.

Proposition 1.1. A coherent sheaf F on a noetherian integral scheme X is reflexive if
and only if (at least locally) it can be included in an exact sequence

0-F->E-9-0,
where & is locally free and % is torsion-free.

Proof. Suppose # is reflexive. Then locally one can find a resolution of the dual
sheaf & by locally free sheaves

L =Ly F 0.
The dualizing functor s#om(-,0,) is left exact, so taking duals gives an exact
sequence

0-F "Ly~ Y.
Now £ is reflexive so & =~ # ™. The middle sheaf .Z is locally free. Taking % to be
the image of the map #;— %, gives an exact sequence of the required form with

torsion-free.
Conversely, suppose there is an exact sequence

0-F->8-%-0

with & locally free and ¢ torsion-free. Then # is torsion-free, so the natural map
F - F ™ is injective. On the other hand, & is locally free, hence reflexive, so # 7L 6.
Therefore the quotient # ~/#, which is a torsion sheaf, is a subsheaf of . Since ¥
is torsion-free, it is zero, so & is reflexive.

Corollary 1.2. The dual of any coherent shedf is reflexive.

Proof. Given a coherent sheaf &, take a local resolution by locally free sheaves

Lo Ly F 0.
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The duals of these sheaves form an exact sequence
0->F >L Y.

Then, as above, taking ¢ to be the image of the map £;— %, there is an exact
sequence

0> F >F;—%-0
with &, locally free and ¢ torsion-free. So by (1.1), #~ is reflexive.

Proposition 1.3. Assume that X is normal, i.e. all its local rings are integrally closed
domains. Then a coherent sheaf F is reflexive if and only if

1) & is torsion-free, and

2) for every xeX such that diim@, 22, depth F 22.

Proof. Here x ranges over all scheme points of X, 0, is the local ring of x on X, &,
is the stalk of # at x, and the depth is measured over the local ring 0,.

First suppose % is reflexive. Then & is torsion free. Further by (1.1) we can
find a local exact sequence

0->F->E-9-0

with & locally free and ¢ torsion-free. Let x be a point with dim0,22, and
consider the exact sequence of ¢,-modules

0-F,—6.-%9,~0.

X normal and dim @, >2 imply that depth O, = 2 by Serre’s criterion “normal <>R,
+8,” [14, Theorem 39, p. 125]. Then since & is locally free, depth &,=2. On the
other hand, since ¢ is torsion-free, depth %, =1. It follows that depth #,22. For
example, one can use the local cohomology vanishing criterion for depth [7,
Corollary 3.10, p. 47] together with the long exact sequence of local cohomology
[7, 1.1] for H. over the local ring.

Conversely, suppose that # is a coherent sheaf on X satisfying the conditions
1) and 2) of the proposition. Since # is torsion-free, the natural map # —»&F ™ is
injective. Let # be the quotient:

0-F>F " ->R-0.

If xeX is a point for which dim@, =1, then @, is a discrete valuation ring, by the
R, part of Serre’s criterion quoted above. Therefore &,, being a torsion-free O~
module, is actually free, so #,~%,, and #,=0. Thus # has support of
codimension = 2. Suppose #+0. Let xe Ass# be an associated point of #, for
example, the generic point of an irreducible component of the support of #. Then
depth #,=0. In the exact sequence

0-F F R0

since # ™ is reflexive and dim @, >2, it follows that depth #."22 by the first part
of the proof above. Then using the exact sequence of local cohomology and the
depth criterion as above, depth #,=1. This contradicts condition 2). So we
conclude that #=0, hence # =% " is reflexive.
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Corollary 1.4. Assume that X is regular, i.e. all its local rings are regular local rings.
Then a reflexive sheaf F on X is locally free except along a closed subset Y of
codimension 2 3. In particular, a reflexive sheaf on a regular scheme of dimension 2 is
locally free.

Proof. The set of points where a coherent sheaf is not locally free is a proper closed
subset of X [8, II, Exercise 5.8], so it suffices to show for any point xeX with
dim @, =2 that Z,_ is a free 0),-module. Indeed, by (1.3) depth #_ =2. Since 0, is a
regular local ring, this implies that the homological dimension of & is zero, i.e. #,
is free [14, Exercise 4, p. 113].

Corollary 1.5. Assume X is normal, and let

0->F >F->R-0
be an exact sequence of coherent sheaves, with F reflexive. Then F' is reflexive if
and only if Ass consists of points of codimensions 0 and 1 only.

Proof. In any case &' is torsion-free, so &' is reflexive if and only if it satisfies
condition 2) of (1.3). For any point xeX with dim@, =2, depth #_ =2, so as above,
depth &, >2if and only if depth £, 1, i.e. x¢ AssZ. In other words, Z must have
no associated points of codimension > 2. This means that Ass# must be of pure
codimension 1.

Next we will show that reflexive sheaves are determined by their behavior off of
subsets of codimension =2. At the same time we show that reflexive sheaves are
the same as torsion-free sheaves which are “normal” in the sense of Barth.

Definition (Barth [1, p. 128]). A coherent sheaf # on X is normal if for every open
set UCX and every closed subset YC U of codimension =2, the restriction map
F(U)-»F(U-Y) is bijective.

Proposition 1.6. Let F be a coherent sheaf on a normal integral scheme X. The
following conditions are equivalent :
(i) F is reflexive,
(i) & is torsion-free and normal ;
(iii) & is torsion-free, and for each open U CX and each closed subset YC U of
codimension 22, #,=j F_y, where j:U—Y—-U is the inclusion map.

Proof. Since reflexive implies torsion-free, we may assume that & is torsion-free.
We will show that each of the above conditions is equivalent to

(iv) for each closed subset YCX of codimension 22, #y(F)=0, where 3,
denotes the local cohomology sheaf.

(iii)e>(iv). This is a standard property of local cohomology sheaves [7, 1.9].

(iv)=>(ii). The restriction map &#(U)— £ (U —Y) is injective since & is torsion-
free. Thus there is an exact sequence

0-F(U)»F(U-Y)-»HYU, F).

Since & is torsion free, #;(#)=0 also, so the spectral sequence [7, 1.4] of local
cohomology groups and sheaves implies that H}(U, #)=0. Here we apply (1v) to
the closure Y of Y in X.
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(ii)=(iv). The sheaf #,!(#) is associated to the presheaf U—Hy (U, #).
Letting U range over an affine base for the topology of X, the next term in the
exact sequence above is HY(U,#)=0, so condition (ii) implies that
H}, ,(U,#)=0. Therefore #; (#)=0.

(iv)=(i). To show that & is reflexive we use the criterion of (1.3). For any point
xeX with dim@, >2, let Y be the closure of x. Then ;' (#)=0 implies H(#,)=0,
so depth #_=2. '

(i)=(iv). Let YCX be a closed subset of codimension >2. For any closed subset
ZC Y there is a spectral sequence associated to the composite functor [;=1I;-I;.
Since # is torsion-free, #,°(#) =0, so we find #,}(F) = #, (#y (F)). Now assume
& is reflexive, and suppose #; (%) +0. Let xe Ass5#; (#). Then taking Z to be the
closure of x, the above formula shows 5, (%), #0. Therefore depth &, = 1, which
contradicts (1.3). We conclude that ;' (#)=0.

Corollary 1.7. Let f:X—Y be a proper dominant morphism of normal integral
schemes, with all fibers of the same dimension. If F is a coherent reflexive sheaf on X,
then f, & is a coherent reflexive sheaf on Y.

Proof. The coherence of f, # follows of course from the hypothesis f proper. Since
& is torsion-free and f dominant, f, # is also torsion-free. To show that f, & is
reflexive, we use (1.6) (ii). Then & is normal and we must show f, % normal. If U is
any open subset of Y and Z C Y a closed subset of codimension =2, then f~(U) is
open in X and f~(Z) closed of codimension =2 in f~'(U) because of the
hypothesis on the dimensions of fibres. Now f, #(U)=#(f"'(U)) and
[ FU-2)=F(f"'(U)—f~1(2)) so f, & is normal.

Remarks 1.7.1. The implication # normal implies f, % normal is due to Barth [1,
Sect. 4.2].

1.7.2. If f is a smooth proper morphism of nonsingular varieties of relative
dimension n, and & is locally free on X, then one can also deduce this result from
the relative duality theorem. Indeed, f, # is the dual of R"f (F " ®wy,y), hence is
reflexive by (1.2).

Example 1.7.3. The following example, due to Stremme, shows that # locally free

does not imply f, # locally free, even if f is a smooth morphism of nonsingular
varieties. On P!, consider extensions

0-0(—2)»6-0(2)-0.

They are classified by H!(IP*, O(—4)), which is a 3-dimensional vector space. Let T
be this vector space, considered as an affine 3-space, and let # be the universal
extension of O(2) by O(—2) on X =P! x T. Then & is locally free of rank 2 on
P! x T Let f:X — T be the projection. For any te T let %, be the fibre on IP'. Then
F,=02)®0(-2) for t=0, but F,20(1)®O(—1) or OBO for t+0. Thus

3 for t=0
h(PL, %)=
( ) {2 for t+0

and

1" for t=0
h(IP! -
.(]p,,grr) {0 for t40.
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We will show that f, & is not locally free. One might think this was obvious
from the calculation of h%#,) above. To be sure, there is a natural map

[, F ®k()~>HF)

for any t, but it need not be an isomorphism [8, III, Sect. 12]. Indeed, one can
show that for t=0 it is the zero map! So this does not help to see if f,# is locally
free.

Instead, we use a different method. Let PeT be the point t=0, and let
Z=f"Y(P)CX. The functor I,, which takes sections of a sheaf on X with support
in Z, can be written as a composite functor I, =TI f,. This gives rise to a spectral
sequence

Ef=HYT R f(F)=E"=H}X, %),

for any coherent sheaf # on X. In our case, since & is locally free on X and Z has
codimension 3, the abutment H%(X, #)=0 for n=0,1,2. Thus the d, map gives an
isomorphism of initial terms

HYR'f,F)=>HYf,F).

Now R!f, commutes with base extension [8, III, 12.11] since R?f, =0, so the
calculations of h'(#,) above show that R'f, # is a torsion sheaf concentrated at P.
Therefore Hy(R'f,#)+0, so HX(f,F)+0, so f, F is a reflexive sheaf, by (1.7), on
T whose depth at P is 2. Thus f,# is not locally free.

Proposition 1.8. Let f:X —Y be a flat morphism of noetherian integral schemes, and
let F be a reflexive coherent sheaf on Y. Then f* is reflexive on X.

Proof. We will show for any coherent sheaf & on Y, that f*(#")=(f*#)" From
this and the definition of reflexive sheaves, the proposition follows immediately.

The question is local on X and Y, so we reduce to the following easy result
about flat ring extensions. Let A be a noetherian ring, let M, N be A-modules, with
M finitely generated, and let A— B be a flat ring homomorphism. Then the natural
map

Hom (M, N) @ B—Homy (M @ B,N @ B)

is an isomorphism. To prove this it suffices to note that both sides are
contravariant left-exact functors in M, and that the result is trivially true for

M=A.

Proposition 1.9. Assume X is integral and locally factorial (i.e. all its local rings are
unique factorization domains). Then any reflexive rank 1 sheaf is invertible.

Proof (cf. Barth [1, Lemma 1, p. 128]). Since X is normal and # torsion-free, there
is a closed subset Y of codimension =2 such that & is locally free (hence
invertible) on X—Y On the other hand, since X is locally factorial,
PicX - Pic(X — Y)is bijective [8, I1, 6.5 and II, 6.16]. Therefore there is an invertible
sheaf & on X with %, _,=~%,_,. Then since # and & are both reflexive, using
(L.6) (i), F =j, Fy-y and L=j %y _y, 50 F=Z. Thus F is invertible.
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Example 1.9.1. To show that (1.4) and (1.9) are best possible, we give some
examples of non-locally-free reflexive rank2 sheaves on a regular scheme of
dimension 3. Let & be a rank 2 vector bundle on P2, and let M = (P H°(IP?, &(n))

nel

be the corresponding graded module over the homogeneous polynomial ring
S=Kk[x,,X;,X,]. Then # =M is a reflexive sheaf on SpecS. It is locally free if and
only if & is a direct sum of line bundles. Since one knows many indecomposable
rank 2 vector bundles on IP?, this gives many examples of non-locally-free reflexive
sheaves on A>.

It is instructive to study these examples further. The sheaf # on SpecS is
locally free everywhere except possibly at the origin P. There, its local cohomology

groups Hi(%) are 0 for i=0,1 by construction, and HY(F)= @ H'(P?, &(n)).

nel
Thus depth & , =2, which proves # is reflexive. And & will be locally free if and
only if depth & ,=3, which is equivalent to H 2(#)=0. Thus the non-vanishing
cohomology groups H'(PP?, &(n)) are the obstructions to F being locally free.

We close this section with a special property of rank 2 reflexive sheaves. If £ is a
rank 2 vector bundle, then the natural map £®&— A2 gives the well-known
isomorphism £ =&®(A28)!, where A 2# is an invertible sheaf which we may
call the determinant, or first Chern class of &. How can we generalize this to
reflexive sheaves? In general, tensor operations on non-locally-free sheaves are
poorly behaved. Therefore to obtain reasonable definitions and results, we will
usually restrict to an open set where a sheaf is locally free, do tensor operations
there, and then extend back to the whole space.

Definition. Let # be a torsion-free coherent sheaf on an integral locally factorial
scheme X. We define an invertible sheaf det.#, the determinant of %, as follows.
Let Y be a closed subset of codimension =2 of X such that & is locally free on
X — Y of rankr. Then A"(F_,) is an invertible sheaf on X — Y. As in the proof of
(1.9) there is a unique invertible sheaf on X whose restriction to X — Y is N(Fx_y-
This is det#.

Proposition 1.10. Let & be arank 2 reflexive sheaf on an integral locally factorial
scheme X. Then F =% @(detF)™ .

Proof. Again choose Y of codimension =2 such that &, _y is locally free. Then on
X — Y the formula for a rank 2 vector bundle holds:

Ty ZFy y®NFy y) "

Since # " and # @(det#)~ ! are reflexive sheaves on X, whose restrictionsto X — Y
are isomorphic, by (1.6) (iii) they are isomorphic on X.

2. Numerical Invariants

In this section we review results we will need such as Chern classes, Riemann-Roch
theorem, and Serre duality, giving special attention to the case of rank 2 reflexive
sheaves on IP.

We begin with Chern classes. They are usually defined for vector bundles & on
a nonsingular variety X, and take values in the Chow ring [8, Appendix A]. In
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case X =IP", the Chow ring is Z[t]/t"**, where t is the class of a hyperplane, so we
may consider the Chern classes c(&) as integers, and the Chern polynomial

c(B)=1+c,(E)t+...+c (O

as a polynomial with integer coefficients.
One knowns that c, is multiplicative in the following sense : if

0-8"-E->8"-0
is a short exact sequence of vector bundles, then
c(&)=c(&)c(&").

Therefore the Chern polynomial c, can be defined on the Grothendieck group
K(X) of vector bundles on X [8, p. 435]. For a nonsingular variety X, the
Grothendieck groups of all vector bundles and of all coherent sheaves coincide [8,
II1, Exercise 6.9]. Therefore c, is defined for all coherent sheaves on X. In
particular, this gives a definition of Chern classes ¢(#)eZ for all coherent sheaves
& on P" and all i=1,2,...,n. For a vector bundle & of rankr, one knows that
¢(€)=0 for i>r, but of course this need not hold for coherent sheaves.

Lemma 2.1. Let & be a coherent sheaf of rank r =0 on P", and let e Z. Then the
Chern classes of #(l) are given by

—i+2 )

AF D) =cF)+(r—i+Dle,_ (F)+ (’ ; )lzc,._z(?)+ ot (:) 3
Proof. Because of the universal nature of such formulas, it is enough to check the
case ZF locally free and i<r. Furthermore, by the splitting principle, one may

assume F = Y ((a,). Then the calculation is tedious but straightforward.

i=1
Corollary 2.2. Let & be a coherent sheaf of rank 2 on IP? with Chern classes c,, c,,
¢5. Then the Chern classes of F(l) are

ci=c,+2I
cy=c,+c I+ 12
cy=c;.

Note in particular that c, does not change with twisting.

Theorem 2.3 (Riemann-Roch). Let & be a coherent sheaf of rankr on IP3, with
Chern classes c,, c,, c;, and let y(F) =) (— 1)'h'(F) be its Euler characteristic. Then

3
WF)=r+ (Cl: ) —2¢,+3(c;—cyc,)—1.

Proof. This can be deduced from the generalized Grothendieck-Hirzebruch-
Riemann-Roch theorem [8, Appendix A, 4.1]. Or it can be proved independently
on IP" by showing that K(X)=Z[h]/(1 —h)"*! where h is the class of ¢(1), and then
reducing to sheaves of the form Y O(a). In either case, once one knows that y(#)
can be expressed as a polynomial with rational coefficients in the Chern classes,
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the coefficients themselves can be recovered by computing with sheaves of the
form ) @(a;), which is easy.

Corollary 2.4. If # is a coherent sheaf on IP3, then c,c,=c,(mod?2).

Proof. The Riemann-Roch formula above shows that 3(c;—c,c¢,) is an integer.

Theorem 2.5. (Serre duality). Let # be a reflexive coherent sheaf on IP°. Then there
are isomorphisms

HF ®uw)—»H*F)
H3(F Qu)—~HYF)
and an exact sequence
0—+H1(9’7'®w)—>H2(9")'—>H°(é”xt‘(9°~, w))—»H%ﬁ"’@w)—»H%ﬁ)’—»O :
Proof. The usual Serre duality theorem says that H{(#) and Ext® (&, w) are dual

vector spaces [8, I, 7.1]. We combine this with the spectral sequence of local and
global Ext functors:

B = HY(ExtYF, 0))=E"=EXt"(F, 0).

Since # is reflexive, the E%? terms are zero except for ¢=0, 1. Indeed, Ext(F,w)
= #Hom(F ,w)=F @w. Furthermore, & is locally free except ata finite number of
points P, by (1.4). At those points # has depth 2, hence homological dimension 1.
Thus &xt'(#,»)=0 for i=2, and £xt'(#,w) is a coherent sheaf supported at the
points P,. It follows then that E5' =0 except for p=0. Now the spectral sequence
degenerates into two isomorphisms and one 5-term exact sequence. Substituting
H3 (&) for Ext{(#,w) gives the result.

Remark 2.5.1. Serre’s vanishing theorem [8, I11, 5.2] says that H{(#({))=0 for i>0
and I>0. In the case of a locally free sheaf & on IP3, this implies that H'(&()) =0 for
i <3 and [ <0. If & is reflexive, this version of Serre duality shows that H{(F (1)) =0
for i=0,1, and [ <0, and that H%(# (])) is of constant dimension h°(#xt'(#, w)) for
1<0.

Proposition 2.6. Let & be a rank 2 reflexive sheaf on P3. Then c,4(F)
=ho(&xt'(F,w)). In particular, c; 20, and ¢, =0 if and only if F is locally free.

Proof*. We will calculate the Chern classes of & in two different ways. Let #
have Chern classes c,, ¢,, ¢;. Since the determinant sheaf of # defined in Sect. 1 is
0O(c,), we see that F = F(—c,) by (1.10). Therefore by (2.2)

(F)=1—ct+cyt?+c .

On the other hand, since & is reflexive, it has homological dimension <1 at
every point, so we can find an exact sequence

0-8,»8,—>F -0

2 The idea for this proof, simpler than my original proof, is due to W. E. Lang
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with &, and &, locally free. Therefore
c(F)=clE)c (&) .
Taking duals gives an exact sequence
0 F >8> E{ > Ext (F,0)-0.
Therefore
c(F)=clE) c (&) e (Ext(F, ).
For a locally free sheaf &,
c(&)=c_/[8).

On the other hand, &xt'(#, 0) is a sheaf supported at the non-locally-free points of
&, whose length is equal to h%(&xt!(#, w)), since the twist w has no effect. Call that
length n. Then by (2.7) below,

c(ExtY(F,0)=1+2nt3.
So we find
A F ) =c_[Ep)c_ (&) (1+2nt%)
=c_[(F)(1+2nt?)
=(1—c t+c,yt2 —cyt?) (14 2nt)
=1—ct+c,t? +(2n—c,)3.
Comparing with the other expression for ¢,(#) we see that c;=2n—c,, s0 c; =n,
as required.

Lemma 2.7. Let % be a sheaf on P* concentrated at a finite number of points, of
length n. Then
(D) =1+2n3.

Proof. Using induction on n and the multiplicativity of ¢, we reduce to the case
n=1.Then ¥ =(@p, where P is a point in IP*. The sheaf 0, has a resolution on IP? of
the form

0-0(—3)-0(-2)*-0(—1)>>0-0,—0.
Therefore
c(Op)=1-(1-0"31-2031-30)" .
A short calculation then gives c,(0p)=1+2t3, as required.

Remark 2.7.1. Since the sheaf &xt'(#, w) has support at the points where # is not
locally free, and its length is a measure of the nonfreeness of # at those points, we
will refer to (2.6) by the catch phrase “c, is the number of points where # is not
free”. This result gives more insight into the fact (2.2) that c, is invariant under
twisting. Note also, by the local duality theorem [7, 6.3] that at each point P,
&xt'(F,w)p is dual to the local cohomology group H (%) which measures the
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extent to which & does not have depth 3. So c, is also equal to the sum of the
lengths of the modules H2(#) taken over the non-free points of . Compare
(1.9.1) for examples of these local cohomology modules.

3. Stable and Semistable Reflexive Sheaves
We continue to use the definition of Mumford and Takemoto [18].

Definition. A reflexive coherent sheaf # on IP" is stable (resp. semistable) if for every
coherent subsheaf #’ of &, with 0<rank %' <rank#,

WF)<uF)
(resp. <), where u=c,/rank.

Lemma 3.1. Let Z be a rank 2 reflexive sheaf on P", which is normalized so that
¢,(#)=0 or —1. Then F is stable if and only if HY(#)=0. If ¢, =0, then F is
semistable if and only if HY(#(—1))=0.

Proof. To test a rank 2 sheaf for stability we need only consider rank 1 coherent
subsheaves. Since # is reflexive, we can replace any rank 1 subsheaf by its double
dual without decreasing g, so it is enough to consider rank 1 reflexive subsheaves,
which are invertible (1.9). On IP", an invertible sheaf is of the form O(l) for some
leZ. Thus & is stable if and only if for any subsheaf O()S#, 1<0. This is
equivalent to H(#)=0. In case ¢, =0, & is semistable if for any such subsheaf,
1<0. This is equivalent to H*(#(—1))=0.

Remark 3.1.1. The definition of stability or semistability due to Gieseker and
Maruyama (GM-stable) replaces u in the definition above by P/rank, where P is
the Hilbert polynomial. Since the leading term of the Hilbert polynomial
is determined by ¢,, it is clear that stable=>GM-stable = GM-semi-
stable = semistable. In the case of rank 2 reflexive sheaves on P3, one can show
in fact that stable<>GM-stable, and that the only GM-semistable sheaf which is
not stable is 0@0. For ¢, odd there is nothing to prove, so we may assume ¢, =0.
Then the Hilbert polynomial of & is [9, 8.1]

P (h=31+1)(+2)(+ 3)—c,(1+2)+ 3¢5.
If # is GM-semistable but not stable, then H%(F)+0, so there is an exact
sequence

0-0->F—-S,—-0,
and

Py)=3Ps()).
Since Py=1(1+1)(I+2)(I+3), we find
0< —c,(1+2)+ 3¢5,

the inequality being understood as polynomials in . In particular, ¢, <0. On the
other hand, ¢, 20 by (3.3) below. Therefore ¢, =0, so Y=0, and #=00.
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This shows that the only GM-semistable sheaf which is not stable is D¢, and
in particular, stable<>GM-stable.

Theorem 3.2. Let F be a semistable rank 2 reflexive sheaf on IP*. Then for a general
plane HCIP?, the restriction % is a semistable vector bundle on H.

Proof. This generalizes the corresponding result for vector bundles [9, 3.3]. The
proof is slightly different, because of the non-locally-free points.

Observe first that since & is locally free except at a finite number of points, the
restriction to a general plane %, is locally free. On the other hand, if H is a special
plane, containing some points where & is not locally free, there is in any case an
exact sequence

0-F(-1)»F->F,-0.

Since # is reflexive, by (1.5) the associated points of % all have codimension 1. In
other words, %, is a torsion-free coherent sheaf on H. Furthermore, this sequence
shows that the Chern classes of #, are independent of H, special or not. Therefore,
as H varies, the sheaves % form a flat family [8, III, 9.9], and we can apply the
theorems of semicontinuity of cohomology [8, III, Sect. 12].

Now suppose that # is normalized with ¢, =0 or —1. Then by the lemma,
H(#(—1))=0, and if ¢, = — 1, H(#)=0. If %, is not semistable for a general
plane H, then there is an integer m with m+c, <0 such that H%(%(m))+0. By
semicontinuity this is in fact true for every plane H.

For each plane H, let my be the least integer for which H(# y(m))+0. Let mg
=max{my}. Then for most planes H, my=m,. Fix a plane H, not containing any
of the non-locally-free points of #, for which my=m,. Let se H(F y(m,)), and
write the corresponding exact sequence of sheaves on H,

00y Fy(my)—> .2, ylc, +2my)—-0,
where Z is a 0-dimensional subscheme of H. Since ¢, +2m, <0, this shows that
hO(F glmg))=1.

Now take a line L in H, not meeting Z. Then #,=0,(—my)@®0O,(c, +m,), so
h%(F (m,))=1 also, and h°(F(m'))=0 for m' <m,,

Next, we consider the pencil of planes containing L. I claim that for every plane
H containing L, h°(Fy(m,))= 1. First note for any m, the exact sequence

0-Fy(m—1)>F y(m)-F,(m)—0.

Since h(F (m))=0 for m’ <m,, it follows that h°(F4(m'))=0 for m’ <m,. On the
other hand, h%(# (m,))+0 by choice of m,. So the exact sequence
0> HO(F ylmy))— HA(F (my))

shows that hO(F 4(m,))= 1.

Now we can complete the proof as in [9, 3.3] by blowing up the line L. Let
p:X-P3

ycx 1, pt

%

LeP?
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be the blowing-up map, let Y=p~ (L), and let g:X —1IP! be the map given by the
pencil of planes through L. Then p*# is reflexive on X (since & is locally free
along L), and q,(p*#(m,)) is an invertible sheaf on IP* [8, I1I, 12.9]. But we have
seen that for every plane H containing L, the map H O(Fylmo)—H O(F (my)) is an
isomorphism. Therefore q,(p*F (my))—q,(p*F)y(m,) is an isomorphism. And
this latter sheaf is just O, since

(p*#)y=p*#, and ?LgﬁL(—mo)®@L(c1+mo).

We conclude that g, (p* % (m)) = Op:, which implies that H%(# (m,))+0 on P3,
contradicting the semistability of F.

Corollary 3.3. If % is a semistable rank 2 reflexive sheaf on IP3, then ¢i —4c, <0.
Proof. The same is true for a semistable rank 2 vector bundle on P2 [9, 3.2].

Remark 3.3.1. Over a field of characteristic zero, one can generalize Barth’s
restriction theorem [1] for stable vector bundles: if # is a stable reflexive rank 2
sheaf on IP?, then the restriction #, of # to a general plane is stable, unless # is
isomorphic to a null-correlation bundle. There are proofs (unpublished) by
Gruson and Peskine and by Wever. An analogous restriction theorem in
characteristic p>0 has recently been proved by Ein [5]: the restriction #, of a
stable rank 2 reflexive sheaf on IP? to a general plane is stable, unless & is either a
null-correlation bundle or a Frobenius pullback of a null-correlation bundle.

Now we turn to the question of moduli. Maruyama [12, 13] has shown that
there is a coarse moduli scheme for stable torsion-free sheaves with given Chern
classes. One knows from deformation theory that the Zariski tangent space to the
moduli scheme at the point corresponding to a stable sheaf # is Ext}(#, %), and
that the obstructions to extending an infinitesimal deformation lie in ExtX(&F, Z).
The next result will give the “expected” dimension for the moduli space.

Proposition 3.4. Let # be a rank 2 reflexive sheaf on IP3 with Chern classes ¢, ¢,, C5.
Then

3
Y. (—1)'dim Exti(#F, F)=2c}—8c,+4.
i=0

Proof. Compare [9, 4.2] where the same result is proved for a locally free rank 2
sheaf on IP3. In our case, since & is reflexive, we can find a resolution

08, >8> F -0,

where &,, &, are locally free sheaves. Let &; have rank k. Then &, has rank k+ 2.
For the purposes of this calculation, we may assume that &, and &, are sums of
line bundles. So let

k+2

&= Z 0(a)
i=1
and

k
51 = =Z] @(bj) .
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Replacing # by the complex &,—4,, we can calculate the Ext(#,%) as the
hypercohomology of the complex

EsRE, > E;RE,DERE, ~E,RE,.

So the alternating sum of the dimensions of the Ext’ will be equal to the alternating
sum of the Euler characteristics y of these sheaves. We know x(0())=1(I+1) (I+2)
(I+3). Substituting the expressions for &, and &, above, we obtain our answer in
terms of the ; and b;. On the other hand, these are related to the Chern classes c; of
& . After a somewhat messy calculation in which the linear and cubic terms all

cancel, we obtain the formula of the proposition.

Remark 3.4.1 If # is a stable rank 2 reflexive sheaf on IP3, then one sees easily that
Hom(#,#)=k and Ext*(#,#)=0. So the proposition gives

8¢c,—3 if ¢, =0

: 1 —di 2 =
dim Ext (y,y) dim Ext (,9*",9') {8(:2‘—'5 if C1=—1-

This is the same result as for rank 2 vector bundles [9, 4.2]. Note in particular that
it is independent of c¢;. We conclude [15] that the dimension of each irreducible
component of the moduli space is >8c,—3 (resp. 8¢,—5). Furthermore, if
Ext*(#, #)=0, then it is nonsingular [13, 6.7] of dimension equal to 8c, — 3 (resp.
8c,—95).

4. Correspondence with Curves in IP?

In this section we explain the correspondence between rank 2 reflexive sheaves on
IP? and curves in IP3. This generalizes the known correspondence for vector
bundles [9, 1.1]. To simplify our statement, we will identify line bundles on IP?
with the standard line bundles ¢(/). Then we discuss the problem of determining
the possible Chern classes ¢, c,, ¢, of stable rank 2 reflexive sheaves on IP?, and
give some examples.

Theorem 4.1. Fix an integer c,. Then there is a one-to-one correspondence between
(i) pairs (#,s) where & is a rank 2 reflexive sheaf on P* with ¢,(¥)=c,, and
se H%(F) is a global section whose zero-set has codimension 2, and
(ii) pairs (Y, &), where Y is a Cohen-Macaulay curve in P2, generically locally
complete intersection, and £ H%(wy(4—c,)) is a global section which generates the
sheaf w/(4—c,) except at finitely many points.
* Furthermore under this correspondence

c,=d
c3;=2p,—2+d@4—c,),

where c,, c, are the Chern classes of #, and d, p, are the degree and arithmetic genus
of Y.

Proof. We follow the idea of the proof of [9, 1.1] noting necessary modifications.
Given (#,s) as in (i), the section s defines a map 0% #. Taking duals gives a map
F "= (0. Its image is an ideal sheaf we call .#,. This defines the curve Y. By (1.5), the
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kernel of the map # -4, is a reflexive, rank 1 sheaf %, which by (1.9) is
invertible. Since Y has codimension 2 by hypothesis, £ must be ¢(—c,). So there is
an exact sequence

0—O(—c,)>F - Fy—0. ' (1)

Since Z is locally free except at a finite number of points, we see already that # is
locally generated by two elements, except at those points, so Y is generically
locally complete intersection. This sequence also shows that depth,.#,=2 at the
points where & is not locally free. This implies that depth,®, =1 at those points,
so Y has no embedded or isolated points. In other words, Y is a Cohen-Macaulay
curve.

Now the exact sequence (1) defines an element e Ext!(#y, O(—c,)). Using the
exact sequence 0— ., — 0 — @0y —0, this group is isomorphic to Ext*(0y, O(—c,)),
which in turn is isomorphic to H°(Y, wy(4—c,)), exactly as in the vector bundle
case [9, proof of 1.1]. Thus we obtain £e H(wy(4—c,)).

Applying the functor #om(-,0(—c,)) to the sequence (1) gives an exact
sequence

0—0(—c,)>F(—c,)»0>Ext (Fy,0(—c,))
—&xt}(F,0(—c,))-0. 2)

Here the sheaf &xt'(#y,0(—c,)) can be identified with wy(4—c,) as above, in
which case  is the map which sends 1 to £ Since the last sheaf &xt'(F ", 0(—c,)) is
supported at the points where & is not locally free, £ must generate wy(4—c,)
except at those points.

This shows how the data (i) determines the data (ii).

Conversely, suppose given (Y,¢) as in (ii). Think of & as an element of
Ext!(#y,0(—c,)) and let it determine an extension (1) as above. This defines a
coherent sheaf & . Since Y is Cohen-Macaulay, # " has depth =2 at every point.
Therefore from the sequence (2) it will be locally free except at the points where ¢
fails to generate wy(4—c,), and at those points at least it will be reflexive (1.3).
Then we can define # =(£ )", and the section s is obtained as the dual of the map
F - Fy in (1).

This shows how the data (ii) determines the data (i), and establishes the desired
correspondence between reflexive sheaves and curves.

The fact that c,=d is the same as in the vector bundle case [9, 2.1]: one need
only apply it to the vector bundle obtained by removing the points where & is not
locally free. To compute c,, write the last part of the sequence (2) as

05 wyd—c,) > Ext(F,0(—c,)~0.

Recall also & "=~ % (—c,) by (1.10), so the sheaf on the right, up to a twist, which is
irrelevant, is the sheaf whose length we know to be c¢; (2.6). So ¢; =degw,(4—c,)
=2p,—2+d@4—c,).

Remark 4.1.1. If & is a rank 2 vector bundle on IP3, then we know [9, 1.4] that for
n>0, there is a section se H%(#(n)) corresponding to a nonsingular curve Y. We may
ask if this is also true for reflexive sheaves. The answer is no in general. Indeed, a
necessary condition that a reflexive sheaf # correspond to a nonsingular curve is
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that at each point P where & is not locally free, the module Ext!(#,, 0;) over the
local ring @, be isomorphic to @p/(x, y,z™) for some choice of regular parameters
x,¥,2, and some m>1. This is apparent from the exact sequence (2). For if Y is
nonsingular, then wy is an invertible sheaf. Take x, y local parameters at P defining
the curve. Then the module wy(4—c,)/¢ will be of the form given.

We do not know if this condition is sufficient for some twist of & to
correspond to a nonsingular curve.

Proposition 4.2. Let & be a rank 2 reflexive sheaf on IP* corresponding to a curve Y
in P? as in (4.1). Then & is stable (respectively, semistable), if and only if

(1) ¢, >0 (respectively, ¢, 20), and

(2) Y is not contained in any surface of degree <5c, (respectively < desd

Proof. In view of (3.1), the proof is the same as the proof for vector bundles [9, 3.1].

Remark 4.2.0. Now let us consider the problem of determining the possible values
of the Chern classes c,, ¢,, ¢, of stable rank 2 reflexive sheaves on IP°. We can
normalize any rank 2 reflexive sheaf by a suitable twist (2.2) so that ¢, =0 or —1.
The possible values of c,, ¢, for stable rank 2 reflexive sheaves are then limited by
the following results. :

a) ¢,>0. For ¢, = —1 this follows from (3.3). For ¢, =0, the same result (3.3)
shows that ¢, >0. The fact that ¢, >0 follows from (9.7).

b) ¢;20 (2.6) and c;=c,c,(mod2) (2.4).

¢) ¢, is bounded above by a quadratic polynomial in ¢, (8.2).

d) For a given c,, not all values of ¢, satisfying b) and c) actually occur.
Examples of impossible values of c; will be given in a later paper.

We will now give some examples of stable reflexive sheaves to illustrate these
properties. Of course for ¢, =0 we are simply talking about rank 2 vector bundles,
so we refer to the earlier paper [9] for examples.

Example 4.2.1. Using the correspondence between curves and reflexive sheaves
(4.1) we can construct stable rank 2 reflexive sheaves # on P* with ¢, =0 as
extensions

0-0->F(1)—£(2)—0,

where Y is a curve (Cohen-Macaulay and generically local complete intersection)
of degree d=c, + 1, such that there exists a section &e H%wy(2)) which generates
that sheaf except at finitely many points, and such that Y is not contained in a
plane (4.2). If Y is a reduced curve, the existence of such a ¢ is automatic. So we
have only to investigate the possible arithmetic genera p, of such curves Y, to
obtain reflexive sheaves with c;=2d+2p,—2.

First let c,=1. Then d=2, and the only reduced curve of degree 2 not
contained in a plane is the union of two skew lines. This gives the nullcorrelation
bundle [9, 3.1.1]. In fact, this is the only stable reflexive sheaf with ¢, =0, ¢,=1.
Indeed, if & is such a sheaf, then by (10.3), h°(F(1))=*0, so F(1) has a section
corresponding to a degree 2 curve not contained in a plane. This must be two skew
lines, or a multiplicity 2 structure on a line. In the latter case one can show ¢, =0,
80 it is a vector bundle, hence a nullcorrelation bundle [9, 8.4.1].



Stable Reflexive Sheaves 139

Next let ¢,=2. Then d=3 and there are three possibilities :

Cy Pa Y

0 -2 3 skew lines

2 -1 conic+ skew line

4 0 twisted cubic curve

One can verify that each of these forms a family of dimension 13, which is equal to
the expected dimension 8¢, —3 (3.4.1).

Now let ¢,=3. Then d=4 and there are several possibilities for Y.

C3 Do Y

0 -3 4 skew lines

2 -2 conic+ 2 skew lines

4 -1 2 skew conics

4 -1 twisted cubic+skew line
6 0 plane cubic+skew line

6 0 rational quartic curve

8 1 elliptic quartic curve

Note that for ¢;=4, 6 there are two different ways to construct these sheaves. Is
one family a specialization-of the other, or do they belong to separate irreducible
components of the moduli space?

Let ¢,=4. Then d=5. We do not list all possible Y, only enough to show that
all even values of ¢, between 0 and 14 are possible.

C3 Pa Y
0 —4 S skew lines
2 -3 conic+ 3 skew lines
4 -2 2 conics +skew line
6 -1 twisted cubic+ conic
8 0 rational quintic
10 1 elliptic quintic
12 2 quintic of genus 2
14 3 plane quartic with line attached

For ¢, =14 we must take Y to be a singular curve, namely the union of a plane
quartic curve (say nonsingular) with a line, not in the plane of the quartic curve,
which meets the quartic curve in one point.

Let c,=>5. Then d=6. Using nonsingular curves Y similar to those above, one
can construct sheaves having all even c, satisfying 0 < c, < 20.On the other hand, if
Y is a plane quintic curve with a line attached as above, then ¢, =22.
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Example 4.2.2. We can guess the maximum c, for ¢;=0 and given ¢, >0 by
generalizing the examples above. Let Y be a plane curve of degree ¢, with a line
attached. Then the arithmetic genus of Y is the same as the genus of the plane
curve, namely (c, — 1) (¢, —2). So we obtain a stable reflexive sheaf & with ¢, =0,
¢,>0and

cy=2d+2p,—2=c3—c,+2.

We will see later (8.2) that this is indeed the maximum c; possible.

Example 4.2.3.1f ¢, = — 1 we can make an analogous construction using extensions
0-0->F(1)»F,(1)-0.

In this case Y has degree d=c,, the existence of an appropriate {e H%(wy(3))
imposes no condition on a reduced Y, and stability imposes no condition on Y
(except Y nonempty). The third Chern class is c; =3d+2p,—2.

If c,=1, Y is a line, and we get c;=1.

If ¢,=2, Y can be two skew lines or a conic, giving c; =2, 4. Of course c; =0 is
possible, but cannot be obtained by a reduced curve using this construction.
Instead, we must construct & by a section of Z(2): see (4.2.4) below.

If ¢, =3, this construction using nonsingular curves Y gives ¢;=3,5,7,9.

Let us do the case ¢, =4 in more detail. Here are the possible c, obtained using
reduced curves Y:

C3 pa Y
4 -3 4 skew lines
6 -2 conic+ 2 skew lines
8 -1 2 conics

10 0 rational quartic

12 1 elliptic quartic

16 3 plane quartic

The values ¢;=0, 2 can be obtained using sections of #(2) (4.2.4). Note that
¢, =14 is absent. In fact, we will see in a later paper that the triple ¢, = —1, ¢, =4,
¢, =14 is impossible.

Example 4.2.4. We can construct further examples of stable # with ¢;=—1 as
extensions

00— F(2)—#,(3)—0.

Then Y is a curve of degree d=c,+2, and c;=d+2p,—2. The existence of an
appropriate £e H%(wy(1)) requires that Y should have no unattached lines, and the
stability of # requires that Y should not lie in a plane. We obtain the same
possible values of c; as in (4.2.3), including the low values which were missing
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there. For example in case ¢, =4 the possibilities are

03 pa Y
0 -2 3 conics
2 -1 2 twisted cubics
4 0 rational sextic
6 1 elliptic sextic
8 2 sextic of genus 2
10 3 sextic of genus 3
12 4 sextic of genus 4
16 6 plane sextic.
Example 4.2.5. For ¢, = — 1 and ¢, >0 we can guess that the maximum c, is given

by the construction of (4.2.3) using a plane curve of degree c,. This gives AT
We will se¢ later (8.2) that this is indeed the maximum.

5. A Technical Result on P?
Let & be a rank2 vector bundle on P?, and let S=k[x,,X,,x,] be the homo-

geneous coordinate ring of IP2. We consider the graded S-module M = (P H'(P?,
lez
&(1)). In this section we will prove a result about the dimensions of the components

of an arbitrary graded submodule N of M.

The motivation for this is that when studying a rank 2 reflexive sheaf # on IP?,
we will consider its restriction & to a general plane H. To get information about
the cohomology groups H'(IP3, #(I)), we consider the natural restriction maps
HY(#())»H'(&(l)). The images of these maps, summed over all , give a graded
submodule N of M. If we understand the module structure of M and its possible
submodules, then we can deduce useful information about the cohomology of #.
This will be done in Sect. 7.

Our main tool in analyzing the module structure of M is to consider the
jumping lines of &.

Definition. Let & be a rank 2 vector bundle on P2 with ¢, =0 or — 1. A jumping line
for & is a line L such that H%(&,(—r))+0 for some r>0. The largest such integer r
is called the order of the jumping line L.

Remark 5.0.1. If & is a semistable bundle in characteristic 0, the theorem of
Grauert-Miilich [1, Theorem 1] says that for a general line L, the restriction of &
has splitting type (0,0) or (0, —1). Thus the jumping lines are those for which the
splitting type “jumps” to (r,c, —r) with r>0. The theorem of Grauert-Miilich fails
if & is not semistable, or if the characteristic is not 0, but we use the terminology of
jumping lines anyway, keeping in mind that it may happen that every line isa
jumping line.

Suppose that L is a jumping line of order r of a semistable bundle &. The exact
sequence

0-8(—1)-&-6,-0
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gives an exact cohomology sequence
H°&()~H& (D)~ H'(E(1-1)).

Since H(&(1))=0 for 1 <0, but H(&,())+0 for —r <1, the jumping line contributes
a submodule to M. So in studying the module structure of M, we will be concerned
with the existence of jumping lines.

We begin with some preliminaries.

Lemma 5.1 (Bilinear map lemma). Let ¢:V, x V,—W be a map of nonzero finite-
dimensional vector spaces which is bilinear and nondegenerate, i.e. for each v, +0 in
V, and each v,=%0 in V,, ¢(v,,v,)%0. Then

dimWz=dimV, +dimV,—1.

Proof. This result may be well-known but for lack of a suitable reference we
include the proof. It is closely related to the lemma [8, IV, 5.5] used in the proof of
Clifford’s theorem.

Let XLV, ®V, be the image of V; x V,. Then X is an algebraic variety in the
affine space V;®V,, of dimension equal to dim ¥, +dim ¥V, —1. Indeed, it is the
cone over the Segre embedding of P(V,) x IP(V,) in IP(V, ®V,) [8, I, Exercise 2.14].
The given map ¢ extends to a linear map ¢:V, ® V,—» W, whose kernel meets X
only at zero. Therefore dim W = dimX by the affine dimension theorem [8, I, 7.1].

Proposition 5.2 (Reduction step). Let & be a rank 2 vector bundle on P? with ¢, =0
or —1, and let L be a jumping line of order r for 8.

(@) If ¢, =0, there is an exact sequence

08" >6-0,(—r)—0,

where &' is a rank 2 vector bundle with ¢, = —1 and ¢’,=c, —r. Furthermore t' >t,
where t (resp. t') is the least integer for which H*(&(t)) %0 (resp. H(&'(t'))+0), and
if r>t, then t'=t. There is also a dual exact sequence

0-8-E'(1)—=0,(r+1)-0.
(b) If c, = —1, there is an exact sequence
0-8'(—1)»8-0,(-r—1)-0.

where &' is a rank 2 vector bundle with ¢, =0 and ¢}, =c,—r— 1. Furthermore t' >t
—1,and if r>t—1, then ' =t—1. There is also a dual exact sequence

0-8-8-0,(r+1)-0.

Proof. We do only part (a) since (b) is similar. By definition of r, the restriction &,
of & to L must be isomorphic to @,(r)@0@,(—r). We define the map £—-0,(—r) by
first restricting to L and then projecting on the second factor. Let &’ be the kernel
of this map. By (1.5) &’ is reflexive, and in fact locally free (1.4). Therefore 8" is a
vector bundle.

To compute the Chern classes of & we first use the sequence

0-0(—-r—1)-0(-r)—»0 (—r)-0
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from which we find
c(O=1)=1+1t+(r+1)t%.

Then we use the defining sequence for &” to find
c(&)=1—t+(c,—1r)t*.

The statements about the integers t and t' are clear by considering the exact
sequence of H® associated to the defining sequence for &".
Finally, to dualize, we apply the functor #om(-,0) and get

0 #om(O(—1),0)—> 8~ & - Ext (O, (—T1),0)-0.
The first term is 0; &=¢& since ¢,=0; & =&'(1) since c,(6)=—1; and
ExtY (0, (—7), 0)=0,(r+1) by a simple computation with a resolution of ;.
Theorem 5.3. Let & be a rank 2 vector bundle on IP? with ¢, =0 or — 1 and such that
H%&(—1))=0. Let M= @H L&), and let N be a graded submodule. Let n
=dimN, where N, is the graded component of N in degree . Then

(@ n_,=n_,.

(b) my<ny,, if I<—3 and n;#0.

(c) if n,+1=n,,, for somel< —4, then there is a linear form xe Ho(O(1)) such
that x annihilates N, for allI' <I.

Furthermore,

(1) if & is stable, then (c) holds also for = -3,

(2) if & is stable and 0<n_,<c,, thenn_,<n_,;

(3) if & is stable with ¢, =—1, and n_, <c,, then n_, <n,,.
Proof. Let t be the least integer for which H%(&(t))+0. Then t20 by hypothesis.
Case 1. t=0. Then & itself has a section so there is an exact sequence

0-0-8-S,(c,)~0
for some codimension 2 subscheme Z of P2, Let L be a line not meeting Z.
Restricting to L we find & =0, ®0,(c,). Therefore L is not a jumping line, and
HO&,()=0 for any I <0.

Let x be the equation of the line L. The exact sequence

0—&(— 1) E-6,-0

gives an exact cohomology sequence

HY(&(1+1)— H (&)= H'(6(+1)).

So we see that the map x on H'(&())) is injective whenever /< — 2. Since x maps N,
to N, ,, this shows that n,<n,,, for [< —2. In particular, this proves (a).
Next, consider any [ for which N,#+0, and look at the natural map

N, x HOp:(1))= Ny 1 -
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If for every xe HY(O(1)) the induced map of N, to N,, , is injective, then by the
bilinear map lemma (5.1) we find n, ., =n,+2, which proves (b). If not, let x be a
linear form for which the induced map N, to N, , is not injective, and let L be the
line x=0. As above, we consider the exact sequence

HO(&,(1+ 1)) H(&() = H' (80 +1)).

Summing over all leZ gives an exact sequence of graded S-modules. We consider
N as a submodule of the middle term. Let N”=xN be the image of N by x, and let
N’=§"1N be the inverse image on the left. This gives an exact sequence of graded
S-modules

N5 NSNS0,
We take the grading inherited from the original sequence, so ¢ is a map of degree
—1, and x is a map of degree +1.

Now HO&(I+1))=0 for < —2 by hypothesis, so in that range the map § is
injective. Thus

m=m, +n,, if I£-2
and
My =N +n,, if I=-3.

Since N” is another graded submodule of M, by the inequality already proved,
n},, <nj,, for I< —3.On the other hand, since &, is a vector bundle on the line L,

the module ) H%(&,())) is a torsion-free graded k[y, z]-module. Therefore N’ is
lez
also a torsion-free k[ y, z]-module, and it follows that n;, ; <n;, , [use for example

(5.1) again, applied to the map N;,, x H%0,(1))- N}, ,]. Note also nj, , +0 by
choice of x above.

Combining these results, we conclude that n,<n, , if I< —3 and n,40, which
proves (b).

To prove (c), let I< —4, and suppose in the above proof that ny, ; 0. Then by
the result (b) just proved, nj,,<nj,, so the proof above actually gives
4 Sn+2. Therefore the equality n,+1=n,, , implies Ny, ; =0. It follows from
our first inequality that Ny, , =0 for all I'<I. In other words, the linear form x
annihilates N, for all I'<1.

Since t=0, & cannot be stable, so the statements (1), (2), (3) do not apply. This
completes the proof of the case t=0.

Case 2. t>0. Then & is stable (3.1) and ¢, >0 [9, 3.2]. We will use induction on c,,
beginning with the case ¢, =0 which is vacuous. We also divide the proof into two
subcases.

Case 2.1. ¢, =0. Take an | £ —2 for which N,+0, and as in Case 1 consider the map
Ny x H(Op:(1))> N4 ; -

If the induced map x:N,—N,,, is injective for each xe H%(0(1)), then as before
., 2m+2, which proves (a), (b), and (2), and (c), (1), (3) are vacuous.
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So suppose to the contrary for some linear form x, the map x: N;,—N,  is not
injective, and let L be the line x=0. By one of the exact sequences used earlier, this
implies H(&,(I+1))#0, so L is a jumping line of order r= —1—1>0. We now
apply the reduction step (5.2) to & and the line L. This gives a new rank 2 bundle &’
with ¢, = —1, ¢,=c,—r, and ¢’ 2t>0. Since ¢, <c, we can apply the induction
hypothesis to &’. The dual exact sequence of (5.2) twisted by I gives an exact
sequence of cohomology

HO(&'(1+ 1) — HOO,(1+7+ 1) HY ()= H(E'(+1).

Summing over all [eZ gives an exact sequence of graded S-modules. Our given
module N is a submodule of the third term. Let N”=a(N), and let N'=6"'(N).
Then there is an exact sequence

N3 NS N0,
with gradings inherited from the above sequence. Furthermore, since t'>0,

H°(&'(1+1))=0 for < —1, so § is injective in that range. We conclude that for
I£-2,

! ”
M=y T
— / ”
My =My tMis.

Now we proceed as in the previous case. Since N’ is a torsion-free kLy, z]-
module, 1}, , , ; <M., 4+, If |< —3, the induction hypothesis (b) and (2) applied to
& shows that n!,, <nj,,, with strict inequality if nj,,#+0. This implies that
n,<n,,,, which proves (b). Furthermore, if nj,,=+0, then n,,,=nm+ 2, which
proves (c) and (1).

Statement (3) does not apply in this case, so it remains to show that if
0<n_,<c,, then n_,<n_,. This will prove (2). It also proves (a), because if
n_,=0, (a) is trivial, and if n_,=c,, then N_, =HY&(-2)),so N_,=H"&(—-1))
and both have dimension c,.

So let I= —2. If n”_, <c,(&"), then by the induction hypothesis (3), n”_ ; <ng, so
the same argument as above shows that n_, <n_,. So suppose to the contrary
n’, =c,(&'), ie. N, =H'(&'(—1)). Then we consider the defining sequence

0-&'-»8-0,(—r)—-0

of & (5.2) and the associated cohomology sequence

HY(&'(0) 5> HY(EW) - HY(O,(1-7).

Summing over [ gives another exact sequence of graded S-modules. Our module N
is a submodule of the middle term. Let N’ =~ *(N) and N*=y(N). Then there is
an exact sequence

N"L N2 N¥—0.

Furthermore, p is injective for /<0, so

n

- iv
n_,=n_,+n_,,

"

n_g=n",+n%,_..
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mw m

The induction hypothesis for &' implies n” , <n”, unless n”, =0. On the other
hand, N* is a submodule of @ H!(0(I—r)), and it is easy to see that ni® <nl", , for
any | unless N=HY0,(-r). [To prove this let R be the quotient of
@H'(0,(1—7r)) by N™. Then the dual of R, R’, is a submodule of @ H(O,(r— 1 —2)).
Therefore R’ is a torsion-free k[y, z]-madule, so r;<r, , if r;%0. Translating this
back to R proves the result.] Combining these inequalities gives n_, <n_,, which
is what we want, unless n” ;=0 or N, =H' (O, (—2-7)).

Now let x be the equation of L, and consider the multiplication x:N_,—»N_,.
Since x annihilates N*, we obtain a factorization of x by a map 6:N_,—>N" .
This is induced from a similar map 0:H(&(—2))—»H(&(—1)), and a small
calculation with local coordinates shows that 6 is none other than the map o used
earlier in the proof. We have assumed that N”_; = H'(&'(— 1)), so we conclude also
N",=H'(&'(—1)). In particular, n” ; +0, which takes care of one of the exceptions
above.

To complete the proof, suppose N™,=H(O,(—2—r)). Then also N™,
=HY0O,(—1-7)), so we find N_,=H'(&(—1)), and therefore n_,=c,. Since
we assumed n_, <c,, this proves (2) in this case also.

Case2.2. c¢,=—1. We begin as before. Take /< —2 for which N,*0. If
x:N,—>N,,, is injective for all x, we are done [except for statement (3) which will
be proved below]. In the contrary case, we take x for which the map x : N,—» N, ,
is not injective. Then the line L defined by x=0 is a jumping line of order
r= —1—1>0, and we apply the reduction step (5.2) to & and L. This gives a bundle
& with ¢; =0, ¢, =c,—r—1,and t'2t—1=0. If ' =0 we can apply Case 1 to &". If
t'>0, then we are in Case 2, and can apply the induction hypothesis to & since
¢, <c¢,. The dual sequence of (5.2) twisted by ! gives an exact cohomology sequence

HO(&' (D)~ HOO (1 +7+ 1) HY (&) > HY (&)

similar to the one in Case 2.1 above. Since t' 20, H%(&'(]))=0 for IS —1, 50 6 is
injective in that range. Now an argument exactly like the one used in Case 2.1 for
[< —3 proves (a)c), (1), and (2).

It remains to prove (3). For this we use Serre duality on IP? and the fact that
&"=&(1). This shows that the module M is self-dual, up to shift in degrees. To be
precise, M _, is self-dual, and M, is dual to M _,. We apply the results already
proved to the dual of M/N, which is another graded submodule of M. In
particular,

dim(M/N)_ , <dim(M/N)_,
unless (M/N)_,=0. Note dim(M/N)_,=c, is impossible because dimM_,
=c,—1. This translates by duality as

my—ny<m_,—n_,

unless n,=m,. Sincem_, =c, and my,=c, — 1 by Riemann-Roch, we find n_, <n,,
as required, unless n,=m,. But in the case ny,=m,, we have ny=c,—1, so the
inequality still holds because of the hypothesis n_, <c,. This completes the proof.
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Remark 5.3.1. In the case ¢, =0, & stable, and char. k=0, Barth and Elencwajg [3]
have proved (2) by a different method. It was an attempt to understand their result
which led to this theorem.

6. An Application: Bounds for H'(&(1)) on P?

Let & be a stable rank2 bundle on IP? with ¢, =0 or — 1 and let t be the least integer

for which H(&(1))+0. Applying the result (5:3) of the last section to the module

M= @ H'(&()) itself, we find that the dimension n,= hY(&(D) is strictly decreasing
lez

for I< —2 as | decreases, and so by Serre duality it is also strictly decreasing for
1=0 as [ increases. This fact, together with the Riemann-Roch theorem, gives a
new proof of [9, 7.4], which gave bounds on h*(&(D)) for all L in terms of c,, c,,
and t. ,

But now we can prove a stronger result. Using part (c) of (5.3) we can show that
the existence of large values of I for which h'(€(1)) %0 is equivalent to the existence
of jumping lines of high order, and we can give sharper bounds on h*(&(l)). Here is
a precise statement.

Theorem 6.1. Let & be a stable rank 2 vector bundle on IP? with ¢, =0. Let r>0 be
the largest order of a jumping line, or let r=0 if there are no jumping lines. Let m be
the largest integer such that H'(&(m))+0. Then
@ m2i(c,—t*+t—=2) if and only if r23(c,—t*+t+2). In that case
m=r—2, the jumping line of order r is unique, and
<c,—t2+t=21-2 for tZlSc,—t2+t—r-2
hi@&) § =r—1-1 for c,—t*+t—r—1=5I15r—1
=0 for 1zr—1.
(b) m<i(c,—t>*+t—2) if and only if r<i(c,—t*+t+2). In that case
m>=r—2, and
Sc,—t2+1-21-2 for t

=0 for 1

Similar bounds for | <0 can be obtained by duality.

SIS~ +1-2)
2

h(tS’(l)){ L(e,—t2+1-2).

Proof. For 0<1<t, the value of h*(&(1)) is given by the Riemann-Roch theorem 9,
7.4]. In particular, h!(&(t — 1)) =c, — t* —t. If there are no jumping lines, the case (c)
of (5.3) cannot occur, so we conclude, taking N =M, that n,<n;, —2if n,%0and
1< —3. By Serre duality, this implies that the function hi(&(l)) drops by at least 2 as
| increases, [>0. This gives the bounds of (b) above.

Now suppose that r>0, and let L be a jumping line of maximal order r. From
the exact sequence

0-8(—1)-»&-6,-0
and the stability of &, we have an injective map
0—H%&(I+1)~>H(6()
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for each /< —1. On the other hand, &, =0 (@0 (—r), so
RO(& I+ 1) =h%O (r+1+1)=r+1+2.

We conclude that
n2r+l+2

for iz —1.

On the other hand, suppose n,+ 1 =n,, , for some I< — 3. Then by (5.3), there is
a linear form x annihilating N, so n,=h%&,(I+ 1)), where L is the line x=0. Since r
is the maximum order of a jumping line, h°(&,(I+1))<r+1+2. Combining with
the above inequality, n,=r+1+2.

Thus we see that as | £ — 2 decreases, the function n,=h*(&(l)) drops by at least
2 each time, until it becomes equal to 0, 1, or r+ [+ 2, whichever occurs first. After
that it drops by exactly 1 each time, so is either O or equal to r+/+2.

By duality, as [ > — 1 increases, n, drops by at least 2 each time, until it becomes
equal to 0, 1, or r—I—1, whichever occurs first. After that it is equal to 0 or
r—I—1.

The function y(I) which begins with y(t—1)=c,—t*—t, and drops by 2 for
each increase in [ is

y()=c,—t>+t-21-2 for I1=2t—1.

Let us solve the equation y(l)=r—1—1 for I It gives
lo=c,—t*+t—r—1.

The corresponding value of y is
w(lp)=2r—c,+t*—t.

If p(l) =2, ie. r21(c,—t2+t+2), then h'(&(1) is bounded by y()) for I,
and is equal to r—I—1 thereafter. This gives the bounds in (a).

If w(ly)<1, ie. r<i(c,—t*+t+2), then h'(£()) is bounded by w(l) until it
becomes 0. This gives the bounds of (b).

Now consider the invariant m. In case (a), clearly m=r—224(c,—t*+t-2).
In case (b), m<%(c,—t*+t—2). This proves the if and only if statements.

It remains to prove the uniqueness of the jumping line of order r in case (a).
Indeed, in that case M coincides with the submodule obtained as the image of
@HO(&,(1+1)) at least in its most negative degree /= —r—1. So the equation of L
can be recovered as the annihilator of a generator of M in degree —r—1.

Theorem 6.2. Let & be a stable rank 2 bundle on P? with ¢, = — 1. Let r and m be as
in (6.1). Then
(@) m=1i(c,—t>+2t—2)if and only if r25(c,—t*+2t). In that case m=r—1,
the jumping line of order r is unique, and
Sc,—t24+2t-21-2 for tSISc,—t2+2t—r-3
ht(&(1) {=r—l for c¢;—t*+2t—r—25Ir
=0 for 1zr.
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(b) If m<i(c,—t*+2t—2) then
<c,—t? 21— <l<i(c,—t? —
@) {__.02 242t—-21-2 for t=<ISi(c,—t*+2t-2)
=0 for 1=24i(c,—t*+2t-2).
Proof. Same as (6.1).

Example 6.2.1. One can show by examples that the bounds in these two theorems
are the best possible for all values of ¢,, t, 7 for which there exist stable bundles. We
will illustrate this in a special case.

Take ¢, =0, ¢, >0, t=1, and any integer r satisfying 1(c;+2)Sr<c,. Then we
construct a bundle & as an extension

0-0-8(1)—F42)-0,

where Z is a set of ¢, + 1 points, consisting of Z, =a set of r+1 points on a line L
and Z,=a set of c,—r points on another line L', Then Z is not contained in a
single line, so & is stable. The line L is a jumping line of order r, so we are in case (a)
of (6.1). It is easy to verify that the inequalities of (6.1a) are all equalities in this
case. One way to see this is to use the reduction step for & and L. The new bundle
&' is then an extension

0= 0-8(1)—.F,,(1)~0

whose cohomology is easy to find.

Example 6.2.2. Tt is possible to have all equalities in part (b) of the theorems, and
yet have no jumping lines of order r 22 at all. Take ¢, = 0, ¢, odd = 3. We construct
& by

0-0—-E(1)>F,2)-0,

where Z consists of ¢,+1 points on an irreducible conic C. Clearly Z is not
contained in a line, so & is stable and t=1. To find the jumping lines of &, we
reason as follows. If L is a line which does not meet Z, then restricting to L gives

00, —»&,(1)~0,(2)~0.

Therefore &, is either O, U, or O (D@0, (—1).If Lis a line which does meet Z,
then the number of points of Z on L is either 1 or 2, since Z lies on the conic C.
Then the restriction &, is again one of the same two types, and the second type
definitely exists. Thus r=1,s0r< 1(c,+2) and we find ourselves in case (b) of (6.1).

Next we compute H'(&())=H 1(#(1+1)). It is the cokernel of the map
HO(O( + 1))— H%(0 /(1 + 1)), which factors through H %01+ 1)), which has dimen-
sion 21+3. Thus for 2I+3<c,+1, ie. 2I4+3=c,, h{(&(D)#0. In particular, if
=1 (c, —3), then h*(£(1)) *0. Therefore m= 1(c,—3), and all the inequalities of (b)
are forced to be equalities.

Remark 6.2.3. These theorems and the examples given show that one can “explain”
the nonvanishing cohomology groups H'(£())) in the range I>~%c, by the
existence of high order jumping lines. On the other hand, Brun [4] has shown that
for the generic stable rank 2 bundle on IP? with ¢, =0 or —1 and given c,, the
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dimension of H'(&(l)) is given by the Riemann-Roch theorem: h'(&(l)) = — x(&(1)
whenever x(€(1)) <0, and h*(&()))=0 otherwise. In particular h(&(l))=0 for
I>~ [/Z

To explain the nonvanishing h*(£(l)) in the intermediate range |/c, Sm<1ic,
something else is needed. Clearly in example (6.2.2) the conic C plays a special
role. More generally, one can define the notion of an unstable curve C for a stable
bundle &, as a curve for which H%(&.(—r))=+0 for some >0, and one can explain
the nonvanishing cohomology groups H'(&(])) in this intermediate range by the
existence of suitable unstable curves.

7. The Spectrum of a Reflexive Sheaf

The spectrum of a vector bundle was introduced in the paper of Barth and
Elencwajg [3]. We recall their definition. Let & be a stable rank 2 vector bundle
with ¢, =0 on IP?, over a field of characteristic 0. Let L be a general line of IP?, let
p :X—IP? be the blowing-up of L, and let ¢ : X —IP! be the morphism determined
by the pencil of planes through L. Then the sheaf s# =R'q*p*é"( —1)is locally free
of rank ¢, on P, 50 it can be written

o @l Op(k)

for suitable integers k,, ..., k,. This set of integers {k,} is called the spectrum of &.
The principal properties of the spectrum are

(1) {k;} is symmetric around 0,

(2) {k;} is a connected set of integers,

(3) for any 1< —1, HY(IP?, &(1)) = HO(IP!, # (1 +1)).

From these properties it is easy to deduce a vanishing theorem

4) HY(&()=0for IS —c,—1.

Furthermore, the spectrum provides a stratification of the moduli space which
is useful in the classification problem.

Our purpose in this section is to generalize these results to stable or semistable
rank 2 reflexive sheaves # on IP? with ¢, =0 or —1, and over a field of arbitrary
characteristic. At the same time, we provide a new proof of the original results of
Barth and Elencwajg.

In characteristic 0 it is possible to use the above definition of the spectrum
under these broader hypotheses. However in characteristic p >0 we do not know if
that definition works, so we will take a different approach. We will show (7.1) that
there exists a unique set of integers {k,} with the required properties, but we do not
know if they give the decomposition of R'q, p*#(—1).

Our main results are similar to the ones above. For reflexive sheaves which are
not locally free, the symmetry property is replaced by a formula (7.3) relating the
spectrum to c,. In the case of semistable sheaves the connectedness (7.6) must be
weakened slightly, by allowing possible gaps at 0 or —1. Since Serre duality is
more complicated for reflexive sheaves, we relate the k; to H'(#(l)) and H*(#(])).
As consequences of these results, we will obtain in Sect. 8 vanishing theorems for
HY(#(1)) for I negative, and for H%(# (1)) for [ positive, and we get bounds on ¢, in
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terms of ¢, and c,. Finally we will give examples to show that all these results are
the best possible.

Theorem 7.1. Let % be arank 2 reflexive sheaf with c, =0 or —1 on IP?, and assume
HYF(—1))=0. Then there exists a unique set of integers {k;};,_, ., called the
spectrum of &, with the following properties (where 3# denotes the sheaf @0(k;) on
IPI) :

(@) K'(P3, #()=h°(P', #(1+1)) for 1<-—1.

(b) R2(P3, Z() =h*(P ,#(+1)) for 1=2-3 if ¢,=0, and 1Z-2 if

c,=—1
Proof. Let H be a general plane in IP?, and let & be the restriction . Then & is a
rank 2 vector bundle on H, and H°(&(—1))=0. If & is semistable, this follows from

the fact (3.2) that & is also semistable. In the remaining case ¢, =—1 and
H°(#)+0, there is an exact sequence

0-0->F > F(—1)-0

for a suitable curve Y in IP3. Then any H which does not contain any irreducible
component of Y will give an & =%, with H%(&(—1))=0.

We will now apply the results of Sect. 5 to & Let M=@®H'(H,&(])), and
let N be the submodule defined by the images of the natural maps
H(IP?, # ()~ H'(H, &(l)). Then there is an exact sequence

HY&()-H (F(-1)—»H'(Z())>N,~0.
Since H(&()=0 for I< —1, we find
n=h"(F1)—h'(F(-1)

for I<—1.
We are looking for integers {k;} satisfying (a) and (b) above. The condition (a)
can be expressed as

WED)= Y (k+1+2).
kiz—1-1

Substituting above,

n= Y 1.
iz —1-1
In other words, for each [< —1
#{k;=—-1-1}=n—n_,.
According to (5.3), the quantities n,—n,_, are nonnegative for all /< —1, so it is
possible to find integers k; satisfying these conditions, and the k; 20 are uniquely
determined by (a).

Now we turn to (b). Let R be the quotient module of M defined by the kernels
of the natural maps H%(#(I))—» H*(#(1+1)). Then there are exact sequences

0-R,, > HX(F ()~ HXZ(i+ 1)-»H*&(+1)).
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Since H%(&(—1))=0, by duality H*(&(—2))=0 if ¢, =0, and H&(—1))=0 if
¢, = — 1. Therefore, letting r,=dimR,,

T =R(FO)-h(F(+1))

for 12 -3 if c,=0and I= -2 if ¢, = — 1. The condition (b) can be expressed as

RFD)= Y (—k—1-2).
ki<—1-3
So
rl+1= Z 1’

ki=—1-3

and therefore
#{ki=—1-3}=r -1y,

for all l in the range given. We apply (5.3) to the dual of R, which is a submodule of
M. This shows that the quantities r,, , —r,,, are all nonnegative in the range
given. Therefore such integers k; exist,and the k;<0ifc, =0 and k,< — 1 ifc, = — 1
are uniquely determined by condition (b).

In case c; =0 we now have two determinations of # {k;=0}. We must check
that they agree. In other words, we must show thatn_, —n_,=r_,—r_,. Indeed,
this follows from the exact sequences for all |

0-N,»M,»R,—-0

and the fact that m_, =m_,=c,.

Thus we have proved that there exists a unique set of integers {k;} satisfying (a)
and (b). It remains to show that the number of k; is equal to c,. Indeed, summing
the expressions above for the number of k; equal to each given integer shows

#{k,20)=n_,
#{k;<0}=r_,.
But n_, +r_,=m_, =h'(&(— 1)) which is equal to ¢, by Riemann-Roch.

Remark 7.1.1. In the statements (a) and (b) of the theorem, we assert only that the
dimensions of the cohomology groups in question are equal. We do not claim
there is any natural isomorphism of vector spaces, such as results from the
identification of R'q,p*&(—1) with 5 in the paper of Barth and Elencwajg.

Remark 7.1.2. If chark =0, and if L is a general line in IP3, then one can show, using
a method similar to the method of Barth and Elencwajg, that R'g, p*#(—1)
(using the notation at the beginning of this section) is locally free of rank ¢, on P*,
and that it is isomorphic to . Thus our definition of the spectrum agrees with
theirs. The characteristic 0 hypothesis is used to show that &, is isomorphic to

0, ®0, or O, D0,(—1).

Proposition 7.2 (Symmetry). With the hypotheses of (7.1), assume furthermore that
F is locally free. Then

{—k}={k} if ¢,=0,
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and
{—k}={k+1} if c,=-1.

Proof. This is a consequence of Serre duality. Using the notation of the proof of
(7.1),

m=h(F{D)—h'(F(-1).
By duality,
n=h*F(—1—4—c,)—h(F(-1-3—c,)),
which is equal to r_,_;_.. So for any I< -1,
#{k=—1-1}=m—n_,
L o TPt ST B S
=#{k;=14+1+c,}.

This proves the stated symmetry of the spectrum.

Proposition 7.3. Let & be as in (7.1). Then
c3=—2Yk if ¢,=0
c3==2Yki—c, if c¢,=—1.

Proof. For this we use Serre duality for the reflexive sheaf # (2.5), and the fact (2.6)
that ¢, =h%(&xt!(#, w)). First we need a lemma.

Lemma 7.4. Let # be a rank 2 reflexive sheaf on IP3, let H be a plane not containing
any of the non-locally-free points of #, let M=@H'(H, Fy(l)), let N be the
submodule of M obtained as the image of @H (% (l)), and let R be the quotient
module of M obtained as the kernel of the natural map @ HX(F (1—1))—» @ HA(#(])),
50 that there is an exact sequence

0->N-M-R-0.

For each I, the duality morphism H(F()))-»H*(#(—1—4—c,)) of (2.5) induces an
inclusion

0-N—R_,_5_ .
Summing over | gives a module homomorphism N— R’ whose quotient we call V :
0-N->R'-V-0.
Then V is a module of total length c,, and the self-duality isomorphisms
M =M"_,_,_, of M induce a self-duality V,=V_,_,__ of V.
Proof. Let ¥=&xt (F,w). Then the exact sequence of (2.5) gives an exact
sequence of graded S=k[x,,x,, x,,Xx;]-modules

0-@H F () @H F(~1-4~c,)) > DHY).
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Let the image of this last map be AS ®H%¥). Then A,=0 for 1<0, by Serre’s
vanishing theorem for H?, and 4,=H%%) for >0 again by Serre’s vanishing
theorem, because the next term in the sequence (2.5) is HA(# ().

Let he H%(0 (1)) be the equation of H, and regard A as a graded k[h]-module.
Since H does not meet the support of %, the map h: H%(%)—H%¥) is bijective.
Hence A is a torsion-free k[h]-module. The properties 4,=0 for /<0 and
A,=H%%) for I>0 show that A is finitely generated and of rank =h%%)=c,. By
the structure theorem for modules over a principal ideal domain, it is a free graded
k[h]-module of rank c;.

Tensoring the above sequence of S-modules with S/hS gives

0—-@®N,»®R’ —A/hA—-0,

=1-3—-c

and the structure of A4 just described implies that V'=A/hA is a k-vector space of
dimension c,.
The dual of this sequence is

0->V'->R->N'-0.
Since R=M/N and N'=M’'/R’ and M ~M’, we conclude V'~ V.
Proof of (7.3), continued. Let us compute ) k,. Using the notation of the proof of
(7.1) and the formula

#{k=—1-1}=n-n_,

for each | £ —1, we find

X k=% n.

k>0 1s-2
Then using the formula
#{k=—1-3}=r -1,

for each 1= —2 we find

Z k= - Z .

ki<0 1z2-1

Now suppose ¢, =0. Then we sum these two expressions and change variables
in the second, so as to obtain

Yhk= Y m=r__y).
1s-2
By the lemma, this gives
Yk=— Y v,
1s-2
where v,=dim V,. The self-duality of V shows that

Z = Z Uy
15-2 1z-1
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so each of these sums is equal to 1dim ¥ =1c,. We conclude that c;=—2}) k; as
required.

In the case ¢, = —1 we sum the above expressions in the following way:
k= Y (m—ro_)—r_y=— Y y-r_,.
I1s-2 1=-2

In this case the self-duality of ¥ shows that

Y u=2 0.

1£-2 120
Therefore
_1 1
Z Vy=3C3—20_1.
1s-2
So we get

c3=—2Yki+v_,—2r_,.

Then using v_,=r_,—n_, and n_;+r_,=m_, =c, gives the required result.

Theorem 7.5. Let & be as in (7.1), and let {k;} be the spectrum.

(a) Assume H°(#(—1))=0.

1) If there is a k>0 in the spectrum, then 1, 2, ...,k also occur in the spectrum.

2) If there is a k<—1, then —1, —2,...,k also occur if ¢,=0, and
—2,—-3,...,k also occur if c,=—1.

(b) Assume F is stable.

1) If there is a k>0, then 0,1, ...,k also occur?.

2) If there is a k<O, then —1, —2, ..., k also occur. Furthermore, if ¢, =0, then
either 0 also occurs, or — 1 occurs at least twice?.

Proof. Let H be a general plane, and let & = %. We apply the strict inequalities of
(5.3) to &. In case (a), the hypothesis H(#(—1))=0 implies H %(&(—1))=0, as in
the proof of (7.1). Then (5.3) tells us that n,_, <n, for all /< —2, unless n,=0. Using
the formula from the proof of (7.1)

#{k=—1-1}=n—n_,

for all I< —1, we see that if there is a k>0 in the spectrum, then the integers
1,2, ...,k also occur in the spectrum. This is 1).
Similarly, using the formula

#{ki=—1-3}=r -1,

and applying (5.3) to R’, we get conclusion 2).

Now suppose & is stable, and assume for the moment that & =% is also
stable. Then (5.3) gives the additional conclusion that n_, <n_, unless n_, =c,.
Applying (5.3) to the module N = image of ®H Y(# (D)), the inclusion NS R’ shows

3 The case ¢, =0, & stable requires the restriction theorems of Barth (char0) and Ein (charp). We
will signal with * later results which depend on this one
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that n_,<%c,, so the inequality n_,<n_, holds without exception, and this
proves 1).

For statement 2), we apply (5.3)to N=R".If ¢, = —1,thendimM _,=c,—1,s0
again n_,<n_, without exception, which shows that —1,—-2,...,k occur. If
¢, =0, then either n_,<n_,, which shows that 0,—1,...,k occur, or else
n_,=n_,=c,. In the latter case, dimM _,=c,—2,s0 n_, —n_; =2, which shows
that —1 must occur at least twice.

It remains to consider the case & stable, and % not stable for a general plane
H, which can happen only when ¢, =0. If chark=0, the restriction theorem of
Barth [1], which holds also for reflexive sheaves (3.3.1), implies that & is the
nullcorrelation bundle. The spectrum of the nullcorrelation bundle is {0}, so 1) and
2) hold vacuously.

If chark=p>0, the restriction theorem of Ein [5] implies that # =F*&,,
where &, is the nullcorrelation bundle, F is the Frobenius morphism of IP3 to itself,
and r=0 is an integer. In this case we will show by explicit computation that 0
occurs in the spectrum. There is an exact sequence

00— &y(1)—.F((2)-0,

where Y is a disjoint union of two lines L, and L, in IP? [9, 8.4.1]. Applying F™*
gives an exact sequence

0-0-F(9)— Fyw(29)—-0,

where g=p" and Y@ is the scheme defined by the g™ powers of the equations
defining Y. In fact, Y@ =LQULY, where L? is a complete intersection (x?, y9), if
x, y are the linear forms defining L,, and similarly for L,.

The number of times 0 occurs in the spectrum of & is n_; —n_,=h'(F(—1))
+h (F(—3))—2h'(#(—2)). Using the isomorphisms HYF ()= H Fyw(l+9))
and the fact that L? is not contained in any surface of degree <g, it is easy to
compute these numbers. We find that 0 occurs exactly g times in the spectrum.
Since g =1, this proves the result.

Corollary 7.6. If & is semistable, the spectrum is connected, except possibly for a
gap at 0. If & is stable, the spectrum is connected®.

Remark 7.6.1. For given c,, c,, c5, one can ask what are the possible spectra of
stable or semistable reflexive sheaves with the given Chern classes. The results of
this section provide various necessary conditions for a set of integers {k;} to be a
spectrum, but not all sets of integers satisfying these conditions actually occur. For
example, consider stable vector bundles with ¢, =0 and ¢, =8. There are eight sets
of {k;} which satisfy the symmetry and connectedness conditions, but only seven of
these correspond to bundles (see Table 1).

The notation used in the table is as follows. Y, denotes an elliptic curve of
degree d. Unions are supposed to be disjoint. F, , denotes a complete intersection
of surfaces of degrees a and b. Z corresponds to a section of 8'(3) where &’ is an
instanton bundle [i.e. a stable bundle with ¢, =0 and H!(#'(—2))=0] with ¢, =3.
Z' corresponds to a section of 8”(4) where &” is a nullcorrelation bundle.

4  See footnote to (7.5)
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Table 1
Spectrum Existence
08 £(1)—9 skew lines (instanton bundle)
—1,0%1 EQR)- YUYy

-1, —1,0% 1,1 Q) Y,uY,UY,
-1, -1, -1,0%1,1,1 62y Y,uY,uYauY,

-2, —-1,041,2 6(3)-F, sUZ
-2, -1,-1,0%1,1,2 6(3)F, 4UF; 5
-2,-2,-1,0%1,2,2 does not exist
-3, -2,-1,0%1,2,3 6@)y—F, ,0Z'

We will show in a later article that there is no bundle with spectrum —2, —2,
-1,0,0,1,2,2.

8. Vanishing Theorems and Bounds on c,

In this section we will use the properties of the spectrum developed in the last
section to prove vanishing theorems for H'(#(1)), <0, and HX#()), 1>0, and
give bounds for c, in terms of ¢, and c,. We also give examples to show these are
the best possible.

The vanishing theorem for H'(#(l)) was proved by Barth and Elencwajg [3]
for a stable vector bundle with ¢, =0 in characteristic 0. Our result generalizes and
gives a new proof of theirs.

Theorem 8.1. Let & be a rank 2 reflexive sheaf on P* with ¢, =0 or —1.
(a) Assume HY(F(—1))=0. Then H'(#(I))=0 for IS —5c,—3.
(b) Assume F stable and c, = —1. Then H\(#())=0 for IS —3c,—3.
(c) Assume & stable and c,=0. Then H\(F(I))=0 for IS —3c,—1.

Proof. Let {k;} be the spectrum of % and let k=max {k;}. Then by (7.1a), H YFW)
will be 0 for [+ k+1 <0, i.e. < —k—1. So our technique is to use the properties of
the spectrum to bound k.

Let us begin with the case # semistable and c; =0. Since ¢, 20, by (7.3) we see
Y k;<0. On the other hand, by (7.6), the spectrum is connected, except possibly for
a gap at 0. So if c, is even, the largest possible k is 3¢,, corresponding to the
spectrum {—1c,,..., —1, 1,..., $¢,}. If ¢, is odd, the largest k=1%(c,—1),
corresponding for example to the spectrum {—3(c,+1),..., —1,1,...,3(c,— 1)} or
{—1(c,—1),..., —1,0, 1,..., 2(c,— 1)}. Therefore H'(F())=0 for I< —c,— 1 if
c, even, and I<—%c,—1% if ¢, odd. Since ! is an integer, both of these are
equivalent to the condition I < —4c,— 3 of (a).

In case HY(#(—1))=0 and ¢, = — 1, then by (7.3), }_k,;< — }¢,. And by (7.5),
the spectrum is connected, except for possible gaps at 0, —1. Looking at the
possible spectra, we find again that k=4c, if ¢, even and k= 4(c, — 1) if ¢, odd are
the largest possible values of k. We get the same result (a) in this case also.

In case (b), again Y k,< — 3c,, and by (7.6) the spectrum is connected. If ¢, is
even, the largest possible k is 1(c, —2), corresponding to the spectrum {— 3¢5, ...,
—1,0,1,...,1(c,—2)}. If ¢, is 0dd, k=}(c, — 3) is the largest possible. We find that
HY(#()=0 for I< —4c,—3, as required.
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To prove (c), we could use an entirely similar argument, based on (7.6)* which
says the spectrum is connected. But that depends on the restriction theorems of
Barth and Ein, so it may be of interest to give another more elementary proof not
depending on those results.

So suppose # is stable and ¢, =0. From part (a) we know already that
HYF(1))=0 for I< —3e,—3. If ¢, is odd, this is equivalent to I< —1c,—1, so
there is nothing to prove. If ¢, is even, we must show that H'(#(—4c,—1))is 0.

Suppose on the contrary H'(#(—%c, —1))+0. Let H be a general plane, let
& = Fy, which in any case is semistable, and use the notations of the proof of (7.3).
Then n_,,, _, 21, and because of the inequalities of (5.3) we have

On the other hand, because NCR' and R=M/N, we have n_,+n_,
<dimM _, =c,. This forces all the inequalities above to be equalities.

Now for each , let a,=h*(#(l)). From the equation n,=a,—aq,_, for all <0 we
find

a_m_l=1

a_i”=3

a_,=%c,(c,+2)
a_;=%c,(c,+6).
Consider the natural map
HYF(~Lc,— 1) x H(Opo( 1) > HY(F(— hey).

By a trivial case of the bilinear map lemma (5.1), there is a linear form x which
annihilates H'(#(—3c,—1)). Let H, be the corresponding plane. Then
H(Fy,(—%¢,))#0, so there is an injective map O —Fy (— 4c,).

Next look at the exact sequence

HYF(1+ 1) HO(F (I + 1)) > H{(F ().

Because # is stable (here we use the hypothesis & stable for the first time),
HO%#(14+1))=0 for IS —1, so the next map is injective. Combining with the
inclusion Oy — % (—1c,) we find

h{(F (= 1) Zh(Fy ) Zh%(Og,(3c,)) = $(c, +2)(c, +4).

This contradicts the result a_, =3c,(c, +6) above, and completes the proof.

Example 8.1.1. For ¢, =0 and each c, odd 2 1, an example of a stable vector bundle
& with H(&(—4c,—1))=+0. Take an integer m=1. Let Y, be a plane curve of
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degree 2m—1, and let Y, be a complete intersection of two surfaces of degree m. Let
Y be the disjoint union of Y; and Y,. Then

d=degY=m?+2m—1
wy=0y(2m—4).
So we can use Y to define a bundle &(m) by the exact sequence
0—-0—E(m)— Fy(2m)—0.

By construction ¢,(£)=0, c,(§)=2m—1, and & is stable, because Y is not
contained in any surface of degree m. Indeed, Y, is contained in a pencil of surfaces
of degree m, but none of them can contain Y;. Finally, since Y has two connected
components, H'(#,)=1, so h}(§(—m))=1. But m=3(c,+1), so this gives the
required example.

Since H(&8(—4c,—1))#0, the spectrum must contain 3(c,—1). So by sym-
metry (7.2) and the fact that & semistable implies the spectrum connected except
possibly for 0 (7.6), we see that the spectrum must be {—=%(c,-1),..., —1,0,1,...,
1(c,—1)}. In particular, it is connected.

For c,=1 we get the null correlation bundle. For ¢, =3 we get bundles with
a-invariant 1 [9, 3.1.3]. For ¢, 25 we get the oversized family discussed by Barth
and Hulek [2]. See (9.9) for further discussion of these bundles.

Example 8.1.2. For ¢, =0 and each c, even =2, a semistable vector bundle & with
H(&(—4c,—1))%0. This is an analogous construction. Take m=1, let Y be a
plane curve of degree 2m—1, let Y, be a complete intersection of surfaces of
degrees m—1,m+ 1, and let Y=Y,[]Y,. Then

d=m?+2m-2
wy=0,2m—4),
so we can construct a bundle & by
0—0—-&(m)— Fy(2m)—0.

It has ¢, =0, c,=2m—2, and is semistable, because Y is not contained in any
surface of degree m—1. Since Y has two components, as above h'(§(—m))=1.
Since m=1c, + 1, this gives H'(6(— 3¢, — 1)) *0.

The construction works for any m =2, so gives examples for all even ¢, 2 2. The
spectrum contains 1 c,, so by symmetry and connectedness (except at 0) it must be
{—1c,.., =1, 1,.., 305}

Example 8.1.3. For ¢, =0 and each c, even 22, a stable vector bundle & with
H'(&(— 1c,))*0. This time the construction is a little different regarding the curve
Y,. Take m 1, take Y, as above a plane curve of degree 2m— 1. For Y, we need a
curve of degree m?—1 with wy, =0y (2m—4). To prove the existence of such a
curve, let &, be the null correlation bundle, and let Y, be the zero-set of a general
section of &,(m). For m=1, Y, will be a disjoint union of 2 lines. For m22 we can
take Y, nonsingular and irreducible [9, 1.4], and it will have degree m?+1 and
w=0(2m—4) as required.



160 R. Hartshorne

Now take Y=Y,]]Y,. Then
d=m?+2m
wy=0,(2m—4)

so we construct & as before. It will have ¢, =0, ¢, =2m, and will be stable. In fact,
since the null correlation bundle &, is stable, Y, is not contained in any surface of
degree m, so a fortiori Y is not contained in any surface of degree m. In fact, if
m22,thendegY, 2m+ 1,50 Y is not even contained in any surface of degree m+ 1.
In that case H%(£(1))=0.

If m=1, Y consists of 3 skew lines, ¢, =2, and these are the bundles studied in
[9, Sect. 9]. They have h'(&(—1))=2, and spectrum {0,0}. For m>2, Y has two
components so h'(#(—m))=1. Since m=1%c, we get H'(&(—1c,))+0. The
spectrum is {—3(c;—2),..., —1, 0, 0, 1,..., 3(c,—2)}. One can show that the
dimension of the family of these bundles is 3m?+4m+8 [see Sect.9 for a
discussion of the analogous situation for (8.1.1)]. For m>3 this number is
>8c, — 3, which shows the existence of oversized families for all even ¢, 26.

Example 8.1.4. For ¢;=—1 and each c, even =2, a vector bundle & with
h°(&(—1))=0and H'(&(— 4c,—1))+0. The construction is similar. Take m >3, let
Y, be a plane curve of degree 2m—2, and let Y, be a complete intersection of
surfaces of degrees m—2 and m+1, and let Y=Y,] | Y,. Then
d=m*+m—4

wy=0y(2m->5).
So we can construct a bundle & by

0-0-8(m)—Fy(2m—1)-0

which will have ¢, = —1, ¢,=2m—4. Since Y is not contained in any surface of
degree m—2, we see that H%(&(—1))=0. Since Y has two components, h!(#;)=1,
so h'(&(—m+1))=1. But m=%c,+2, so H(€(—4c,—1))+0. The spectrum is
{=2c,—Low —2,1,2,,.: 40, )

- Example 8.1.5. For ¢, = —1 and each c, even 22, a stable vector bundle & with
HY(&(—%c¢,))#+0. Take m22, let Y, be a plane curve of degree 2m—2, let Y, be a
complete intersection of surfaces of degrees m, m—1, and let Y=Y,| [ Y,. Then

d=m*+m-2
wy=0y(2m—5)
s0 we construct & by
0-0-8(m)—SFy(2m—1)—-0.

It has ¢, = —1, c,=2m—2, and is stable because Y is not contained in any surface
of degree m—1. For m>2, Y has two components, so as before, H(&(—m+ 1)) %0.
Since m=4c,+1, HY(&(—4c,)#0. The spectrum is {—3c,,..., —1,0,1,...,
1(c,-2)}

26,
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Remark 8.1.6. These examples show that the bounds in (8.1) are best possible.
Note that the theorem applies to all reflexive sheaves, while the examples just
given are all vector bundles. One might ask whether a reflexive sheaf for which the
bounds of (8.1) are sharp is necessarily a vector bundle. The answer is yes and no.
Take the case ¢, =0, ¢, odd, and & stable as in (8.1.1) for example. If & is such a
reflexive sheaf with H'(#(—3c,—1))+0, then the spectrum contains 3 (c,—1).
The conditions ) k;<0 and {k;} connected (7.6)* force the spectrum to be

{=%(c,—-1),..., =1, 0, 1,..., 3(c,—1)}. Then by (7.3) c;=0 so &# is a vector
bundle.

A similar argument shows that a reflexive sheaf # which is semistable with
¢, =0and ¢, even, or stable with ¢, = —1 and ¢, even and for which the bounds of

(8.1) are sharp must be a vector bundle. These are illustrated in (8.1.2) and (8.1.5)
above.

However, if ¢, =0, ¢, even, & stable or if ¢, =0, ¢, odd, # semistable, then
there are non-locally-free reflexive sheaves for which the bounds of (8.1) are sharp.
Here are some examples.

Example 8.1.7. For ¢, =0 and each c, even =2, a stable reflexive sheaf # with
HY#(—1c¢,)#+0,and ¢, =c,>0. Take m21, let Y, be a plane curve of degree 2m,
and let Y, be a complete intersection of two surfaces of degree m. Then

d=m?+2m
wy, =0y (2m—3)
wy,=0y,(2m—4).
We construct & by an exact sequence

0-0—>F (m)—> F,(2m)—0.
The extension is determined by an element ¢eH%wy(4—2m)
=HO(0y,(1))®H®(0y,). So & vanishes on a set of 2m collinear points in the plane,
and ¢; =2m. We find ¢, =0, c,=2m, and & is stable because Y is contained in no
surface of degree m. Since Y has two components, H'(#,)=1, so H(#(—m))=1.
This shows H(#(—%c,))=+0 as required. The spectrum is {—}c,,..., —1, 0, 1,
3(c,—2)}

2It is interesting to compare this example with (8.1.3). The construction is
simpler, and the spectrum has no repeated terms. One could say this reflexive sheaf
is the natural example of sharpness of (8.1) in this case, and that explains why the
construction of (8.1.3) was more subtle than the other vector bundle examples.

Example 8.1.8. For ¢, =0 and each ¢, odd 23, a semistable reflexive sheaf # with
HY(#F(—%c,—1)#0 and c;=c,+ 1. The construction is similar. Take m2>2, let
Y, be a plane curve of degree 2m, and let Y, be a complete intersection of surfaces
of degrees m—1, m+ 1. Construct & as in (8.1.7). Then ¢, =0, c,=2m—1, ¢, =2m,
Z is semistable, and H(#(—m))+0, so HY(#(—1c,—3)+0. The spectrum is
{=%(c,+1),..., —1,1, ..., 3(c,—1)}. Compare with (8.1.1).

Theorem 8.2. Let F be a rank 2 reflexive sheaf on P3.
(a) Assume c¢,=0 and F semistable. Then HXF())=0 for 1=c,—2. Also

2
¢3¢ +c,.
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(b)® Assume c,=0 and F stable. Then H¥F())=0 for |=c,—3. Also
c3Sci—c,+2.

(c) Assume c;=—1 and HY(F(—1))=0. Then H¥(Z(1))=0 for I=c,—1. Also
c3Sel+2e,

(d) Assume c,=—1and F stable. Then H*(F()=0 for 12 c,—2. Also c;=<c3

Proof. Let {k;} be the spectrum of #. According to (7.1b), H 2(#())=0 for
1> —k—2, where k=min{k;}. Also, by (7.3), c;=—-2)k; if ¢,=0, and
c3=—2Y k;—c, if c;=—1. So our strategy to bound ! and to bound c; is the
same: we see what is the most negative the spectrum can be. For this we use the
results of (7.5).

(@) If ¢,=0 and # is semistable, the most negative spectrum is —1,
—2,..,—¢;. So k=-—c,, and H¥F())=0 for l=c,—2. From (7.3),
c3=2-1c)(c,+1)=c2+c,.

(b) If ¢, =0 and & is stable, the most negative spectrum is —1, -1, -2,...,
—c,+ 1. This gives the result similarly.

(c) If ¢;=—1 and H%%F(—1))=0, the most negative spectrum is —2,...,
—c,—1, which gives the result.

(d) Similarly, if ¢,=—1 and & is stable, the most negative spectrum is
—1,—2, ..., —c, which gives the result in this case.

Example 8.2.1. For ¢, =0 and each c,>0, a semistable reflexive sheaf # with
HX(%(c,—3))*0, and c;=c3+c, Take a plane curve Y of degree c,, and
construct & by an extension

0-0-F - F,—0.

Then & is semistable with ¢, =0 and the given c,. The extension is determined by
&e Ho%(wy(4)) = H%(Oy(c, + 1)). Therefore ¢y =c3 +c,, and the set of non-locally-free
points of & is a complete intersection of Y with a curve of degree c,+1 in the
plane. For 1= -3, HYF()=H*(Sy()=H (OW)). Since wy=0(c,—3), and
HY(Y, wy) %0, we see H(F(c,—3))=*0.

Example 8.2.2. For c¢,=0 and each c,>2, a stable reflexive sheaf # with
H¥#(c,—4)+0 and c;=c3—c,+2, cf. (42.2). Let Y be the union of a plane
curve Y, of degree c, with a line L, not in the plane Y;, but meeting Y, at one
point. Construct &# by an extension

0-0->F(1)- F(2)-0.

Then ¢, =0, c, is as given, and we compute c, by the formula c¢;=2p,—2+2d of
(4.1). The arithmetic genus p, of Y is the same as for Y,,s0 ¢; =c,(c,—3)+2(c,+1)
=c2—c,+2. F is stable because Y is not contained in a plane (here we need
¢,=2). For 12 —2, H(F ()= HA(F (I +1))= H'(0y(I+1)). This last group maps
surjectively to H'(@y (I+ 1)), which is nonzero for I+1=c, —3 as above. Therefore
H*F(c,—4) 0.

5 See footnote to (7.5)



Stable Reflexive Sheaves 163

Example 8.23. For ¢;=-1 and each c,>0, a reflexive sheaf % with
H%#F(—1))=0, H(#F(c,—2))*0, and c¢;=c2+2c,. Let Y be a plane curve of
degree c,, and construct & as an extension

0-0-F->S,(—1)-0.

The verification of its properties is similar to the previous examples.

Example 8.24. For c¢;=—1 and each c,>0, a stable reflexive sheaf & with
H*(#(c,—3))+0 and c;=c3, cf. (4.2.5). Again take Y a plane curve of degree c,,
and construct & as an extension

0-0—F(1)- F(1)-0.

The properties are verified as before.

Remark 8.2.5. These examples show that the statements of (8.2) are best possible,
both as regards the vanishing of H*(#(l)) and as regards c,. It is clear that any
sheaf for which c; is equal to the bound given must have the most negative
spectrum, and so for that sheaf the bounds on H%(#(])) vanishing are sharp. We
see from the proof of (8.2) that the converse (sharp H? — vanishing=>maximum c,)
is true also except in case (b), where the are two possible spectra which would give
the same k, namely —1, -1, -2,..., —c,+1and 0, —1, -2, ..., —c, +1. The next
example shows the latter can actually occur.

Example 8.2.6. For c¢;,=0 and each c,>1, a stable reflexive sheaf with
H*(#F(c,—4))+0 and c;=c3—c,. This time take Y to be the disjoint union of a
plane curve Y, of degree c, and a line L, and then construct & as in (8.2.2). The
only difference is that p, is smaller by 1, so ¢, is smaller by 2.

9. Classification of Some Extremal Sheaves

In this section we begin the work of classifying stable vector bundles and reflexive
sheaves with given Chern classes and given spectrum, using the method of unstable
planes. The idea is to make a reduction step similar to the one on IP? described in
Sect. 5, reducing to the study of sheaves with smaller c,. We illustrate this method
in two cases of sheaves or bundles which are extremal for the vanishing theorems
in Sect. 8. The method works well in these cases. Other cases are more com-
plicated, and will be deferred to a subsequent paper.

First of all we must make precise the concept of an unstable plane. Let & be a
stable or semistable rank 2 reflexive sheaf on IP*> with ¢, =0 or —1. An unstable
plane for & should be a plane H for which the restriction &y, is unstable. If £ is a
vector bundle, then & is also, and & will be unstable if and only if H(&yz(—r))+0
for some r>0if ¢, =0 or r 20 if ¢, = — 1. However, if & is reflexive but not locally
free, then & is only torsion-free. In this case the stability of & cannot be measured
by sections of &. Rather we must use the dual & or double dual &z which are
vector bundles on H. It seems most convenient to use the dual &, which has ¢, =0
or 1, and gives a unified definition in both cases, as follows.
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Definition. Let & be a rank 2 semistable reflexive sheaf on IP? with ¢; =0 or —1. A
plane H in IP? is an unstable plane for & if there is an integer r>0 for which
HO(&,(—1))£0. The largest such integer r is the order of the unstable plane.

Remark 9.0.1. The notation & means restrict & to H first, then take the dual. By
Serre duality on H, the condition H%(&(—r))+0 is equivalent to H*(&y(r — 3)) %0,
because H%(&y(r—3)) is dual to Ext®(&x(r — 3), Og(—3))=H(Ex(—7)).

Proposition 9.1 (Reduction Step). Let & be a rank 2 reflexive sheaf on P3 with
¢, =00r —1,c,, and c, given, and let H be an unstable plane for & of order r. Then
there is an exact sequence

08>8 F, y(—1)—0,

where Z is a zero-dimensional subscheme of H. Let s=length ©,. Then & has Chern
classes

ci=c,—1

cy=C,—r—c,

ch=C3—Cy—Cr—1*+12s.
There is also a dual exact sequence

0->8"=8""> Iy 4(r+1)-0,

where W is a zero-dimensional subscheme of H of length c,+c;r+r*—s.
Furthermore, if & is a vector bundle, then s=c,+cr+r?,c;=s, and W is empty.

Proof. [Compare with (5.2) and note change in role of 7 and &” in case ¢, = —1.]
Since H is a unstable plane of order r, by definition H%(&y(—r))=+0, and this is the
least twist of & having a section. A section of this sheaf gives a map Oy — &x(—7).
Dualizing and twisting by —r gives a map & — Og(—r) which is surjective except
at a finite number of points. Composing with the natural inclusion &;— &y gives a
map to Oy(—r) whose image defines the subscheme Z of H:

Ey— I 5(—1)—-0.

Then we compose with the restriction map &—&y and let &’ be the kernel, giving
the exact sequence

08" >E-I, y(—1)-0
of the proposition. To compute Chern classes, we use the exact sequence
0-0(—r—1)>0(—r)>0x(—r)—0
to find
c(Og(—M)=1+t+(r+ 12+ +2r+ 1)1,
Then from the exact sequence
0S5 y(—1)=0y(—1)>0,~0
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and the fact that c(0,)=1+2st® by (2.7), we find
(I p(—)=1+1+(+ 1)+ +2r+1 —2s)83.

Finally, the exact sequence of the proposition allows us to compute the Chern
classes c,c}, ¢y of & as stated.

For the dual exact sequence, we apply the functor #om(-, ) to the original
sequence. We get

0o &= 8~ Ext (I 4(—7), 0)
—Ext!(&, 0)>Ext (&', O)>Ext} (I y(—T1), 0)—-0.

An easy calculation shows that gxtl(fz_ a(—1),0)= Og(r+1). The map from &"" to
this sheaf is surjective except possibly at the points where £xt'(&, 0)+0, which are
the non-locally-free points of &. So the image defines a zero-dimensional
subscheme W of H:

0= E 8" Iy ylr+1)-0.

The length of W can be computed now using the fact that &xt'(&,0) has length ¢,
by (2.6), similarly &xt'(£', 0) has length c, and &xt*(S, y(—7), )= w,, which has
length s.

Finally, if & is locally free, then c; =0, & is a vector bundle, Z is the zero set of
a section of &(—r) so its length is c,(Eg(—1))=c, +¢,r+ r?, and &xt!(&,0)is 0, so
W is empty.
Remark 9.1.1. 1f ¢; = —1, then ¢} = —2, so &' is not normalized. The correspond-

ing normalized sheaf is £'(1) which has Chern classes ¢] =0, ¢; =c, —r, and ¢ =c}.
Remark 9.1.2. If ¢, +0, then s is not uniquely determined by c,,¢,,c5,r. It may
depend on the position of H with respect to the non-locally-free points of §. Thus
¢, also is not uniquely determined by ¢y, ¢;,¢;, and r.

Remark 9.1.3. If t is the least integer for which H%(&(1))+0, and ¢’ the correspond-
ing integer for &', then as in (5.2) t' 2t with equality if r>1.

Now we come to our first main result of this section, which is the classification
of stable reflexive sheaves with ¢, odd and maximum possible c,, namely ¢, =c3
(8.2).

Theorem 9.2. For any m 1, the moduli of stable rank 2 reflexive sheaves on P2 with
Chern classes ¢, =—1, c,=m, c3= m? is irreducible, nonsingular, and rational of
dimension 3 if m=1, and m*+3m+1if m22.

Remark 9.2.1. For m=1,2,3 this is the expected dimension (3.4.1) given by
Riemann-Roch, namely 8c, —5. For m >4, the dimension is >8¢c, -5, so we have
an oversized moduli space.

The proof of the theorem will follow after several lemmas.

Lemma9.3. For each m=1, the construction of (8.2.4) gives a family of stable
reflexive sheaves with Chern classes (—1,m, m?) which is irreducible, nonsingular,
and rational of dimension 3 if m=1 and m*+3m+1if m22.
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Proof. The sheaves of (8.2.4) are constructed by taking a plane curve Y of degree m
and then forming #(1) as an extension

0-0-%(1)-S,(1)-0.

The extension is given by an element ¢e H%(w,(3)), which must generate that sheaf
except at a finite number of points. In this case wy = Oy(m—3), so Ee HY(Oy(m)).

If m=1, Y is a line, so h%(#;(1))=2, and two global sections generate the sheaf
Jy(1). It follows that h®%(F(1))=3, and F(1) is generated by global sections. So
there is an exact sequence

0-Z-03-F(1)-0,

where & is defined as the kernel of the natural map @3- %(1). Now % has rank 1,
and is invertible, since # has homological dimension 1. Its first Chern class is — 1,
s0 Z=~(@(—1). The dual exact sequence is

0-F->0*->S,(1)-0,

where IP is a point. The map @ — .# (1) is essentially unique, so & is determined by
the point IP. Thus the family in this case is parametrized by IP*, the point being the
unique non-locally-free point of &#.

Now let m>2. Then Y lies in a unique plane H, so h°(F(1))=1, and
h%(# (1)) =2. Taking two sections of Z(1) gives an exact sequence

0- 02 F(1)»F, 4(1)-0.

Note that £y 4(1)=0Oyx(1 —m). The dual exact sequence is

0->F ->0*> 5, g(m)-0,

where Z is the zero-dimensional subscheme of H defined by the zeros of
Ee HO(Oy(m)).

Now we see easily that giving & is equivalent to giving H and a 2-dimensional
subspace of H%(0y(m)) corresponding to a pencil of curves of degree m without
fixed components. To give H is to give a point he IP**. So the family of possible
sheaves # obtained by this construction is an open subset of the Grassmann
variety of rank 2 subsheaves of q,p*0(m), where p : X —IP* and g : X —»1P>* are the
maps associated with the incidence correspondence between IP* and IP**. So the
family constructed is irreducible, nonsingular, and rational. Its dimension is 3 for

the choice of H plus 2((’";—2) —2) for the choice of a 2-dimensional subspace of
H®(0,(m)), which gives m?+3m+1.
Lemma 9.4. Every stable reflexive sheaf with Chern classes (— 1, 1, 1) is among those

described in (9.3) for m=1.

Proof. Let & be such a sheaf. Since & is stable, H/(#(1))=0 for /0. By Serre
duality and the isomorphism &= #(1), H3(#(I))=0 for |2 — 3. Next consider the
spectrum of &. It consists of a single integer, since c¢,=1, and by (7.3) it must be
—1. So by (7.1)(b) we have H¥F(}))=0 for /= —1. Now the Riemann-Roch
theorem gives x(#)=0, so from the above we conclude H!(#)=0.
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Now we are in a position to apply Castelnuovo’s theorem [16, p. 99]. Since
HY(#)=0, H{(%(—1))=0, and H3(#(—2))=0, we conclude that #(1) is generat-
ed by global sections, and H{(#(I—i))=0 for i>0 and [=1. Then Riemann-Roch
for #(1) gives h%(F(1))=3. So (1) is generated by 3 global sections, and the
argument used in the proof of (9.3) applies to show it is one of those.

Lemma 9.5. Let m=2 and let # be a stable reflexive sheaf with Chern classes
(—1,m,m?). Then & has an unstable plane of order m.

Proof. (This result is true also for m=1, as one can see from the above description
of & in that case, but the proof we will give now does not work in that case.)
Consider the spectrum of £. It consists of m=c, integers, and because ¢, =m?, the
formula of (7.3) for ¢, and the connectedness of the spectrum (7.5) force the
spectrum to be —1,—2,...,—m [see also (8.2.5)]. Now from (7.1) and the
hypothesis m>2 we find that h*(F(m—3))=1 and h*(F(m—4))=3. Therefore
there exists a linear form xe H°(¢(1)) such that the map multiplication by x from
H*(F(m—4)) to HY(F(m—3)) is zero. Let H be the plane x=0. Then the exact
sequence of cohomology shows that H*(#z(m—3))=+0. So H is an unstable plane
of order m (9.0.1).

Lemma 9.6. Any stable reflexive sheaf & with Chern classes (—1,m, m?) and m22
is among those described in (9.3).

Proof. By (9.5) there is an unstable plane H of order m. We perform a reduction
step for H (9.1) which gives an exact sequence

08 »F 55 z(—m)—0.

The new sheaf & has ¢, = —2 and h°(&’)=0, so it is semistable. The normalized
sheaf &'(1) has ¢=0 and ¢3=0 since m=c,(&). Therefore, by (9.7) below,
&'(1)~ 0@ 0. The dual exact sequence, untwisted once, is therefore

0> F->0*> Iy g(m)—0.
Thus & is of the form described in the proof of (9.3).

Lemma9.7. A semistable rank 2 reflexive sheaf with ¢, =c,=0 must be 0@0. In
particular, c;=0.

Proof. Let # be such a sheaf. According to (8.2), c;= ¢2+c,=0. Therefore ¢, =0,
F is a vector bundle, and in that case it is easy to see F =0@0. For example, by
[9, 8.2], # has a global section, so # is an extension

0—-0-F - Fy—0
where Y has degree ¢, =0, i.e. Y is empty. Then the extension splits, so # =0©0.

Lemma 9.8. Let & be one of the sheaves constructed in (9.3), for any m21. Then
dimExtY(#, #) is 3if m=1 and m*+3m+1if m=22.

Proof. We use the exact sequence (untwisted once) from (9.3)

0-0(—1)2>F >0x(—m)—-0.
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Applying the functor Hom(-, %) we get an exact sequence
0—Hom(#, #)—Hom(0(— 1), %)
—>Ext}(Oy(—m), F)- Ext(F, F)-Ext!(O(— 1)%, F).

Now Hom(#, #) has dimension 1 (3.4.1), and Hom(O(—1)?, #)=2H%#(1)) has
dimension 6 if m=1 and 4 if m>2. At the end of the sequence, Ext!(0(—1)?, %)
=2H'(#(1)), which is 0, as we see directly from the exact sequence for # above.

It remains to calculate Ext!(0y(—m), #). For this we use the exact sequence

0-0(—m—1)->0(—m)—0x(—m)—0,
which gives
0—Hom(O(—m), F)—Hom(O(—m— 1), F)—Ext (Og(—m), F)
—Ext{(O(—m), F).
This last term is HY(#(m))=0 as above, and the first two are H%(#(m)) and
HY%% (m+ 1)), which are easily calculated from the above sequence for #.

Putting all these together gives dim Ext!(#,#)=3 if m=1 and m*+3m+1 if
m22 as required.

Proof of Theorem9.2. We have constructed families in (9.3) of the required
dimension which are irreducible, nonsingular, and rational. We have seen (9.4) and
(9.6) that any stable reflexive sheaf with the given Chern classes is among those
constructed. Finally (9.8) we have seen that for any of those sheaves, the dimension
of Ext!(#,#) is equal to the dimension of the total family. This implies by
deformation theory that the moduli space is everywhere reduced and nonsingular
[13,6.7]. So the families constructed give the whole moduli space, which
completes the proof.

Theorem 9.9. For any m=1, the stable rank 2 vector bundles on P* with ¢, =0,
¢, =2m— 1, and the maximum spectrum —m+1, ...,0, ...,m—1, form an irreducible,
nonsingular, rational family of dimension 5 if m=1 and 3m*>+4m+1 if m22.

Remark 9.9.1. In the case m=1 these are the null correlation bundles [9, 8.4.1] for
which the result is known. In case m=2, having the spectrum —1, 0, 1 is equivalent
to having a-invariant 1. So in this case the stable bundles with ¢; =0, ¢, =3, and
o =1 form an irreducible, nonsingular, rational family of dimension 21. This was
first proved by Ellingsrud and Stremme [6]. In case m >3, the dimension of the
family is >8c, — 3, so it is an oversized family, first discovered by Barth and Hulek
[2]. Until now, we have been unable to compute h'(€nd &) for these bundles, so we
do not know if they form a connected component of the moduli space or if the
moduli space is reduced there. However, Stremme [6, 4.7] has been able to show by
another method that this family is (set-theoretically) an irreducible component of
the moduli space.

The proof of the theorem will follow after several lemmas.
Lemma 9.10. For each m= 2 the construction of (8.1.1) gives an irreducible family of
stable bundles with ¢, =0, c,=2m—1, and spectrum —m+1,...,0,...,m—1, which
has dimension 3m?*+4m+1.
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Proof. The bundles in example (8.1.1) are constructed by extensions
00— &(m)—> Fy(2m)—0,

where Y is a disjoint union of a plane curve Y, of degree 2m—1 and a complete
intersection Y, of two surfaces of degree m. The numerical invariants were
calculated in (8.1.1).

It remains to show the family is irreducible and to find its dimension. The
bundle & is determined by the choices of Y;, Y,, and ¢e H°(0y). These are all
irreducible choices, so the family is irreducible.

The choice of the plane H containing Y, is 3 parameters. The choice of Y, in H
is 4(2m+ 1)(2m)— 1. The choice of Y, is equivalent to the choice of a 2-dimensional

subvector space of H°(((m)). That is 2 ((m-3|— 3) - 2) parameters. The choice of { is

2. Then we must subtract h%(&(m))=1+h°(#,(2m)). Any surface of degree 2m
containing ¥ must have H as a component. Therefore h%(F(2m))= ho(Sy,(2m—1).
This can be calculated from the resolution

0—O(—2m)—>G(—m)*— 5y, -0,

m;—Z)‘ Combining all these shows that the family of

bundles & constructed depends on 3m?+4m+ 1 parameters.

giving h%(Fy (2m—1)=2 (

Lemma 9.11. Let m>2 and let & be any stable bundle with Chern classes and
spectrum as in (9.9). Then & has a unique unstable plane H of order m—2. The
reduction step with respect to H gives exact sequences

08" >E—I; gf(—m+1)-0, 1)
0-&-8' (1) Oy(m)—0, )

where &' is a stable reflexive sheaf with Chern classes (—1,m, m?). The plane H is
also the unique unstable plane of order m for &'.

Proof. Knowing the spectrum of & and using (7.1) we find hY(&(—m))=1 and
h'(&(—m+1))=3. Therefore there is a linear form he H°(0(1)) such that the
induced map h:H(&(—m))—»H'(&(—m+1)) is zero. Let H be the plane h=0.

Then from the exact sequence 0-&(— 1)—"»&—»6’,,—»0 it follows that
H%(&y(—m+1))=1, so H is an unstable plane of order m— 1. The reduction step
(9.1) then gives the exact sequences (1) and (2) and shows that &’ is stable with
Chern classes (— 1, m, m?).

Such reflexive sheaves & were studied in (9.2)-9.8). In particular since the
plane H contains the non-locally-free points of &', it follows that the same H is the
unstable plane of order m for &' found in (9.5). By the proof of (9.3) the reduction
step for & and H gives exact sequences

00> &'(1)>Og(—m+1)-0, (©)
08 > 0*—F, y(m)—0 @)

with the same Z as above in (1).
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Now if H' is any plane different from H, it follows from (1) and (3) that for any
r=0

HO&y(—1)=H%Ey(—1)=H%OF(—r—1))=0.

Therefore H is the unique unstable plane for &. Similarly, restricting (3) to H' gives
0—03,—&(1), so dualizing, 0—»&.(—1)— 0, so H is the unique unstable plane
for & of order =2.

Lemma 9.12. The restrictions of & and &' to H are described as follows : there is an
exact sequence

0> 0gm—1)>Ey—F; yf(—m+1)—-0 ®)
and an isomorphism

Eq=0y(—m)D I y(m—1). (6)
Proof. The exact sequence (5) comes from the definition of Z in the reduction step.

The kernel of the map &y—.#; y(—m+1) is determined by its Chern class.
To determine &}, we tensor the sequence (4) with Oy, giving

0T or,(I4 g(m), Op)— Ey— Of— S5 y(m)—>0.
To compute 7 or, use the resolution
0-0(—1)»0-04-0
of 0. This gives
Tor (S5 z(m), Og)=F; gim—1).
The map OF—.F, z(m)—0 is given by two forms of degree m on H having no

common factor. So the kernel of this map is Ox(—m). Thus there is an exact
sequence

05, gim—1)—E4—> Ox(—m)—0. )]
This sequence gives an element

EcExti(Og(—m), S, gim—1))=H' (S, g(2m—1)).
But it is easy to see from the exact sequence

0-Oy(—2m)>Op(—m)*—F; y—0
that this H! is 0. Hence the sequence (7) splits, giving the required isomorphism (6).
Lemma 9.13. For each m=2, to give a bundle & with Chern classes and spectrum as
in (9.9) it is equivalent to give the following data.

(a) A plane H in P2,

(b) A 2-dimensional subspace V of H%(Og(m)), corresponding to a linear system

without fixed components. The base points of this linear system determine Z.
(c) A form fe HY(Ogz(2m— 1)), not vanishing at any point of Z.
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Proof. Given &, let H be the unique unstable plane for & and make reduction steps
using notation as in (9.11). Take V to be the image of H 9(0?) by the second map of
(4). Now consider the second map of (2). It factors through &5(1), so gives a map,
untwisted once,

Ey—Oy(m—1)—0.
Using the isomorphism (6) of (9.12) this is a map
Op(—m)®F; gm—1)>Oy(m—1)-0.

This is given by a form f of degree 2m—1 on the first factor, and a scalar on the
second factor. For the map to be surjective, f must not vanish at any point of Z.

Conversely, suppose given the data (a}-(c). Then (a) and (b) determine a stable
reflexive sheaf &, as in the proof of (9.3). The form f allows us to define the
surjective map &y— Oy(m—1)—0 as above. Composing with the restriction map
& — & and twisting gives a surjective map &'(1)> 04(m)—0, and we take & to be
the kernel, as in (2). It is easy to verify that & is a stable vector bundle with the
required Chern classes and spectrum.

Remark 9.13.1. Strictly speaking, the form f in (c) is not determined until we
choose a basis for ¥ and a splitting of the sequence (7). For simplicity we will slur
over this subtlety.

Corollary 9.14. For each m=2, the stable bundles with Chern classes and spectra as
in (9.9) form an irreducible, non-singular, rational family of dimension 3m® +4m+ 1.

Proof. The choice of H is a point in IP**, a rational variety. The choices of ¥ and f,
which are essentially independent of each other, are points in a certain Grassmann
variety and a geometric vector bundle over P3*. So the family is irreducible,
nonsingular, and rational.

The choice of H is 3 parameters. The choice of ¥V is 23 (m+2)(m+1)-2)
parameters. The choice of f is 1(2m+1)2m) parameters. Adding gives
3m2 +4m+1 for the dimension of the family.

Lemma 9.15. For each m=>2, if & is a bundle as in (9.9) then h°(&(1))=2, and for
any nonzero section s HO(&(1)), the zero set of s is a curve Y of degree 2m with
Wy = Oy(—2), which is a multiplicity 2 structure on a plane curve Y, of degree m.
Conversely any such curve Y gives bundles of the required type.

Proof. Referring to the exact sequences of (9.11) it follows from (1) and (3) that
HO(&(1))= H(&'(1))= H%(0?), so h°(£(1)) =2. Since & is stable, &(1) is the first twist
of & having sections, so any nonzero section se H°(&(1)) will vanish in codimen-
sion 2. Its zero set Y will be a locally complete intersection curve with degree 2m
and w,=0,(—2), and fits in an exact sequence

0-0—8(1)—-#4(2)—0.

The sheaves &(1), £'(1), and 0? are isomorphic outside of H by the sequences (1)
and (3) so it is clear that Y has support in H. To study Y more closely, consider the
restriction of s to H. This gives a section of &x(1). From (5) we see that
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H°(84(1)) = H%(Oy(m)). In other words, every section of &y(1) is obtained by
multiplying the unique (up to scalar) section of &(—m+ 1) by a form of degree m.
Therefore s, vanishes along a curve Y, of degree m in H, and at the points of Z. So
Y has support equal to the curve Y;, and ZCY,. No irreducible component of ¥
can be equal to the corresponding component of Y, because of wy=0y(—2), so
from the fact that deg Y =2deg Y, we conclude that Y is a multiplicity 2 structure
on Y,

Conversely it is easy to see that such a curve Y gives a bundle of the required
type.
Remark 9.15.1. Since the multiplicity 2 structures on curves have been classified by
Ferrand [9, 1.5], this gives another way of constructing bundles of the type
considered in (9.9).

Lemma 9.16. Let m>2 and let & be a bundle as in (9.9). Then &(m) has sections
vanishing in codimension 2 only, and if s is a sufficiently general section, its zero set Y
is a disjoint union of a plane curve Y, of degree 2m—1 and a curve Y, which is a
complete intersection of two surfaces of degree m. In particular, every bundle of the
type considered in (9.9) is among those constructed in (8.1.1).

Proof. We have seen (9.15) that h°(&(1)) =2. Similarly, from (1) and (3) it follows
for every I<m that HO&()=HY&'()xH(O*I—-1)), and that H(&(m))
~ HO(&'(m)) is strictly greater than H(O*(m—1)). Therefore &(m) has sections
which are not in the image of H°(&(m— 1))@ H%0(1))—H%&(m)), and such
sections vanish only in codimension 2.

Let s be such a section, and let Y be its zero set. Then we know from general
principles that Y has degree m*+2m—1 and that wy=0y(2m—4). Consider the
restriction of s to H. It is a section of &(m), and from (5) we see that s, is obtained
by multiplying the unique (up to scalar) section of £y(—m+1) by a form of degree
2m— 1. Therefore s, vanishes along a curve Y, of degree 2m—1 and at the m?
points Z where the section of &(—m+ 1) vanishes. I claim the curve Y, does not
meet Z. Indeed, by choice of s, it corresponds to a section of &'(m) whose image in
04 by (3) is nonzero. Now the inclusion &'(m)—&(m) from (1) induces a map
&5(m)— &y(m) by restriction to H. In fact, using (5) and (6) this map can be factored

Eym) = 0y @I, y(2m—1)— O 2m— 1) E(m),

where the first map is given by the form f of (9.13c) plus inclusion, and the second
map comes from (5). Since f does not vanish at any of the points of Z, and since sy
is in the image of this map and comes from a section of &'(m) whose image in @ is
nonzero, we see that Y,nZ=40.

Now consider s outside of H. Using (1) and (4), s gives a section of 0*(m) which
vanishes along a complete intersection curve Y, of two surfaces of degree m. So
outside of H, Y=Y,. We conclude, considering the degrees of Y}, Y,, and Y, that
Y=Y,uY,, and that Y,nH=Z, so Y, and Y, are disjoint.

Proof of 9.9. If m=1, the result is known [9, 8.4.1], so we may assume m=2. Then
(9.14) shows that these bundles form a family of the type required, and (9.16) shows
these are the same bundles constructed in (8.1.1).

We end this section with some further properties of these bungles.
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Proposition 9.17. Let m21 and let & be one of the bundles described in (9.9). Then
(a) HY(&(1))=0 for IZ3(c,—1),
(b) &(I) is generated by global sections for 1= c,, and both bounds are sharp.

Proof. If m=1 the result is easy, so we assume m=2. To prove (a) we use the
sequence (2) of (9.11). It follows from (3) that H(&'(1)) =0 for all /, so from (2) there
is an exact sequence

HO(&'(1+ 1)) HY(Ox(l +m)—»H'(&()—~0.

The first map factors through a surjective map to HO(&4(1+1)), which can be
interpreted using (6) of (9.12), so we get

HOOg(l—m+ 1)@HS, gl + m))— HO(O 4(1+m))—>H' (&)

Now let f, and f, be forms of degree m generating . and let f, be the form of
degree 2m— 1 defining the above map [called f in (9.13c)]. Then we see that the

module M =@ H(&())) is just the coordinate ring k[xy,X,,%,] of H, divided by

lez

the ideal generated by f,, f,, f5 and shifted in degree by —m. These forms f; have
no common zero in H, so they define a complete intersection ideal in the
polynomial ring. The largest degree of a nonzero graded component of
K[Xgs X1, X,1/(f1 £, f3) 18 Y (deg f;— 1) which is 4m—4. Therefore, shifting by —m,
we find h'(&(1)) =0 for 1= 3m— 3 precisely. Since c; =2m— 1, this says 123(c,—1).

To prove (b) we use the sequences (1) and (3). From (3) it follows that &"(l) is
generated by global sections for 1=m. Then from (1) it follows [using the fact that
H'(&'())=0 for all I] that &(I) is generated by global sections as soon as I|Zmand
S pl—m+1) is generated by global sections. Since Z is the complete intersection
of two curves of degree m, we need [-m+12m for this to hold. In other words
1=Z2m—1=c,.

Remark 9.17.1. Since these bundles have the maximum spectrum, we might expect
that they exhibit the worst possible behavior with respect to vanishing of H* and
generation by global sections. So we pose the question: do the statements (a) and
(b) hold for all stable rank 2 bundles on IP? with ¢, =0 and given c,?

10. Nonvanishing of H*(&(t)) on IP*

In this section we return to the question of finding the least integer ¢ such that
HO(&(t)) %0 for a stable rank 2 vector bundle on IP3. This question was discussed in
[9, Sect. 8] and also in [10] and [11], where it is seen to be related to finding the
maximum genus of a space curve not contained in a surface of a given degree. At
that time we stated a conjecture [9, 8.2.2] which we now restate more generally for
reflexive sheaves.

Conjecture 10.1. Let # be a rank 2 reflexive sheaf on P* with ¢, =0 and ¢, 20, and
let t> /3¢, +1 —2. Then H(F(1))*0.

While we do not yet have a proof of this conjecture, we will show that it holds
for all values of ¢, <25. The method is the same as the one used in [9, Sect. 8], with
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two improvements. The first is that by taking into account the spectrum, we can
get a better estimate on h%(#(t)). The second is that this method works for reflexive
sheaves as well as for vector bundles.

For simplicity we will discuss only the case ¢, =0.

Theorem 10.2. Let & be a rank2 reflexive sheaf on P* with ¢, =0 and c, 20.
Assume either
(@) ¢, is odd, 0St<%(c,—3), and 8t3 +36t% + 40t +3 >3¢5 + 12¢,t + 24c,, or

(b) c, is even, 0<t<1(c,—2), and 8>+ 36t2+ 52t +24>3c2 +12c,t + 30c,.
Then HY(# (1)) +0.

Proof. Let us first treat the case ¢, odd and & a vector bundle. If & is not stable,
then H%(%#)+0 so H(#(t))+0 for any t >0. Thus we may assume £ is stable. We
will use the Riemann-Roch theorem [9, 8.1] which says

WFO)=1+ 1) +2)(t+3)—c,(t+2).

Since & is stable, h3(#(t))=0 for t=0. Suppose now that h°(#(¢))=0 for some
t=0. Then

WF @)= —h' (FO)+h(FO)ShH(F ().

We will bound h%(#(t)) using the spectrum (7.1). Let c,=2k+1. Then the
maximum possible spectrum, by (7.2) and (7.5) is —k, ...,0, ..., k. Therefore by (7.1)
h*(#(t))=0 for t=k—2, and for t<k—1,

RF )<L k—t—2)(k—t—1).
Now substituting k=4 (c, — 1) and using the inequality (% (t)) < h*(F (1)), we find

8t3 +36t2 +40t +3<3c2 + 12¢,t + 24c, .

Thus if t<k—1=4(c,—3), and the opposite inequality is satisfied, we conclude
that h°(#(t))+0. By the way, if t>k—1, then h*(#(t))=0, and that gives the
conjectured inequality (10.1) in that case.

The argument for a vector bundle with c, even is entirely analogous, using the
fact that if & is semistable with c,=2k, the maximum spectrum is —k,...,
—1,1,..., k. We omit the details.

Now suppose that & is a reflexive sheaf with ¢, >0. There are two changes.
The Riemann-Roch theorem (2.3) is given by the above formula +4c,. On the
other hand, the spectrum can be more negative, so the bound on h*(#(t)) is
weaker. However, these two effects cancel each other, because of (7.3), so that the
same conclusion holds. To be precise, the bound used in the vector bundle case can
be written

R(F(E)S1+2+ ... +(k—t—1).

In our case, suppose the maximum spectrum is —k/, ...,0, ...,k” with K" <k <Kk
Then

R(FO)S14+2+ ... +(K' —t—1).
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Table 2

C2 Acy) B(c,) 2 Ales) B(c,)
11 4 4 26 7 8
12 5 5 27 8 8
13 5 5 28 8 8
14 5 5 29 8 8
15 5 5 30 8 8
16 6 6 31 8 8
17 6 6 32 8 9
18 6 6 33 9 9
19 6 6 34 9 9
20 6 6 35 9 9
21 7 7 36 9 9
22 7 7 37 9 9
23 7 7 38 9 10
24 1 7 39 9 10
25 7 7 40 10 10

On the other hand, by (7.3), c;=—2) k; so

le,=(K'+1)+ ... +K.

Therefore

hW(F(t)—3c,S1+2+ ...+ (K —t-1),

which is better than the original bound. So the same result holds.

Corollary 10.3. The conjecture (10.1) is true for all odd c, <37 and all even c, <24.

Proof. This is simply a consequence of numerical computations expressed in
Table 2. Here A(c,) is the conjectured bound and B(c,) is the least t satisfying the
hypotheses of (10.2). For ¢,<10, h%(#(t))=0 in the proof of (10.2) so the
conjecture holds. For ¢, 211, the quantity t=B(c,) satisfies t<1(c,—3) [resp.
t<1(c,—2)] so we can conclude ho(#(t))*0 from (10.2).
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