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The Restriction of Admissible Representations to n

William Casselman and M. Scott Osborne

Department of Mathematics, University of British Columbia, Vancouver, Canada, and
Department of Mathematics, University of Washington, Seattle, Wash. 98195, USA

Let G be the group of real-valued points on a reductive algebraic group defined
over R. We offer here, among other things, a completely algebraic proof of the fact
that every irreducible admissible representation of G may be embedded in a
principal series representation, under the assumption that the unipotent radical of
a minimal parabolic is abelian.

In this direction, Harish-Chandra [4] has proven, without assumption on n,
that every irreducible admissible representation of G appears as a subquotient of a
principal series representation. Analysis of the asymptotic behavior of matrix
coefficients may be used to improve this to obtain an imbedding. The techniques
we use here, however, seem to us to have an independent interest.

1. Let
P =a minimal parabolic with Levi decomposition P=MN ;
A =the maximal split torus in the center of M;
K =a maximal compact subgroup of G;
K,,=KnM =a maximal compact in M.

Let g, p, etc. be their complexified Lie algebras, and let 3(g), 3(m) be the centers of
the universal enveloping algebras of g, m. The graded rings associated to these by
their canonical filtrations are isomorphic to the rings I(g), I(m) of g-, m-invariants
in the symmetric algebras S(g), S(m) respectively.

Since g is the direct sum of n, a, and , U(g) is the (vector space) tensor product
of U(n), U(a), and U{) by Poincare-Birkhoff-Witt. There exists therefore a
canonical linear map from (g) to U(a) which annihilates nl(g)+ U(g)f and is the
identity on U(a). Since [a,n]Cn, it is in fact a (U(a + n), U(F))-bimodule map, where
f and n act trivially on U(a). It preserves canonical filtrations as well, so it induces
an algebra homomorphism of the associated graded algebras, o:5(g)—S(a). The
ring S(a) is a finitely generated module over o(I(g)) [5, Lemma 2.1.5.4].

Let i be the involution of U(f) which takes X ef to —X. Left multiplication by
elements of U(n) and J(g) and right multiplication by the involute of an element of
AU(f) makes U(g) into a left UM)@ 3(g)@U(F)-module. This structure is compatible
with canonical filtrations, and S(g) thus becomes a module over S(n)®I(g)® S(¥).
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1.1. Proposition. Any homogeneous elements of S(a) which generate S(a) as a
module over o(I(g)) also generate S(g) as a module over S(M)@I(g)® S(¥).

Proof. Suppose «,,...,a, are homogeneous and generate S(a) over a(I(g)). The
proof proceeds by induction on degree. It therefore suffices to show that given a
homogeneous aeS(a), there exist X, ..., X,,€I(g) such that

a—) X oenS(g)+S@)t.

There certainly exist homogeneous X, ..., X, €l(g) such that a=) o(X,)a, and
deg(e) =deg(X,)+deg(e,), all i. But ¢ is a ring homomorphism:

ol@—Y Xa)=0—Y o(X,)o;=0,
so that
a—Y Xo,eker(o)=nS(g)+ S(g)t.

1.2. Corollary. The algebra U(g) is finitely generated as a module over
UM I()@U().

2. A representation (x, V) of g and K on the same space Vis said to be admissible if

1. The restriction to K is an algebraic direct sum of irreducible, finite-
dimensional, continuous representations of K, each isomorphism class occurring
finitely often;

2. The representation of f is the differential of the representation of K ;

3. For any keK, Xeg, one has

n(k)nX)n(k~ ') =n(Ad(k)X).

2.1. Proposition. A finite-dimensional admissible representation of g and K may be
extended uniquely to a continuous representation of G.

This is because G/K =AN is connected and simply connected.

Any endomorphism of the space of an admissible representation which
commutes with g also commutes with the identity component of K, and therefore
any vector in the space is contained in a finite-dimensional subspace stable with
respect to this endomorphism. In particular, the representation is locally 3(g)-
finite. Therefore:

2.2. Proposition. If (m, V) is a finitely generated admissible representation of g and
K, then there exists an ideal of 3(g) of finite codimension which annihilates it.

The main result of this section is:

2.3. Theorem. Any finitely generated admissible representation of g and K is also a
finitely generated W(n)-module.

Proof. Let WCV be a finite-dimensional K-stable subspace which generates V as a
g-module and which is a sum of full f-isotypes—W is then J(g)-stable, too. Let
oy, ...,&, be elements of U(g) generating U(g) over U(n)®R F(g)@U(f). Then any
basis of Zn(a,)W generates V as a U(n)-module.
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2.4. Corollary. If (n, V) is a finitely generated admissible representation of g and K,
then the homology spaces H (n, V) are finite-dimensional.

This follows directly from the fact that
H (n,V)=Tor{,(C,V).

For more on n-homology of g-representations, refer to [3]. (Since [3] deals
mostly, and perhaps unfortunately, with cohomology instead of homology, we
would like to make here a few observations relating the two. If r =dimn, then the
wedge map:

AMQ[A™ MRV]-> ARV

induces a natural isomorphism of A"~ ® V with Hom(A%, A"n® V). Up to sign,
this commutes with the standard differentials, so that H,_,(n, V) is naturally
isomorphic to H%n,Am®YV), which in turn is naturally isomorphic to
AMm@H4(n, V) since n acts trivially on A™.)

2.5. Proposition. If (r, V) is an admissible representation of g and K, then any n-
invariant vector in V generates (over g) a finite-dimensional subspace of V.

Proof. Writing backwards, U(g) is finitely generated over U(f)® 3(g)@U(n). The
proposition now follows from local U(f)- and 3(g)-finiteness.

Combining with highest-weight theory, we have:

2.6. Corollary. If Vis an irreducible admissible representation of g and K, then V'is
finite-dimensional if and only if V contains a nonzero n-invariant vector.

3. Let 6 denote the modular function of P, d(mn)=det(Ad,(m)).

If (w,U) is a continuous finite-dimensional representation of M, define
Ind(w|P, G) to be the right regular representation of g and K on the space of
K-finite functions f:G— U such that f(nmg)=[wé'/*](m) f(g) for all ne N, meM,
geG. Let A:Ind(w|P, G)—»wd''? be the P-morphism f— f(1).

3.1. Lemma (Frobenius reciprocity). If (m, V) is any admissible representation of g
and K, and (w,U) is a continuous finite-dimensional representation of M, then
composition with A induces an isomorphism

A*:Hom,_ x(¥, Ind(w|P, G))= Hom

P—Km

(¥, 06'?).

Proof. Tt suffices to exhibit the inverse of A*. Given a p—K,, map F:V—-wé'/?,
associate to it the g— K-map @:V—Ind(w|P, G) which takes veV to @, where

@ (nmk)=wd''*(m)F(n(k)v) ; neN, meM, keK.

If V is any module over U(n), define V(n) to be the linear span of
{nX)v)Xen,veV}, and V, to be V/V(n). [Of course, V,=H,n, V)] If (n,V) is a
representation of p and K,,, then V, is naturally a representation of m and K,,.
The space V, is the universal n-trivial quotient of ¥, so that 3.1 implies immediately:



196 W. Casselman and M. S. Osborne
3.2. Proposition. If (n, V) is any admissible representation of g and K, and if (w, U)
is a continuous finite-dimensional representation of M, then

Hom,_(V, Ind(w|P, G))=~Hom,, g, (V,,wd'?).

3.3. Remark. If (m, V) is finitely generated and admissible, then V, is finite-
dimensional. The group M is also the group of rational points on a real reductive
group, so that 2.1 implies that V, is in a unique and natural way the space of a
continuous representation of M. In these circumstances, then, the above says that

Hom, _ (¥, Ind(w|P, G)) @ Hom,,(V,, ®6'/?).

4. Let R denote an arbitrary commutative Noetherian ring, and let 0 be a
derivation of R.

4.1. Lemma. If I is an ideal of R, then o(I")CI" 1.
This is straightforward.

4.2. Lemma. If I is an ideal of R and xel, then
0"x"=m!(0x)" (modI).
Proof. This is trivial for m=1. Proceed by induction. Leibniz’ formula gives
Omxm=0"x-x" " 4+ mom " 1x-0x™ " ..+ mOx- 0™ x4 x-0mx™ !
=modx0™ " 'x™ (modI)
since 0”x"eI""? (p<n) by 4.1. Use induction.

4.3. Proposition. Assume that QCR. Let P be a prime ideal of R, I an ideal of R
with P"CICP for some m=1. If dI1CI, then P CP.

Proof. Suppose xe P. Then x™e I, so every d?°x™el too. But
d"x"=m!(0x)™(mod P)
by 4.2. Since IC P and m! is invertible in R, (0x)™e P, so that dxeP.

If V is an R-module, recall that a derivation of V over 0 is a map é:V—V such
that 6(ru)=0r-u+r-ou for all reR, ueV.

4.4. Proposition. If there exists on V a derivation over 0, then Anng(V) is 0-stable.
Straightforward.

4.5. Theorem. If V is a finitely generated R-module on which there exists a
derivation over 0, then every associated prime ideal of V is 0-stable.

Proof. If Pe Ass(V), P=Ann(x), then xe V{P}={ve V|P"v=0 for some n=1}, so
V{P}+0, and Pe Ass(V{P}). By 4.1, V{P} is stable with respect to any derivation
over 4, so we may as well assume that V=V{P}. By the ACC on Vy{P}
={ve V|PYv=0}, there exists an m such that P"V=0. Setting I=Anng(V) the
result follows from 4.4 and 4.3.
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5. Return to Lie Algebras. Assume g to be simple (not an important restriction) and
n—or equivalently N—to be abelian. This means that G is isogenous (over R) to
some orthogonal group SO(1,m+1), m is the Lie algebra of the multiplicator
group GO(m) of the quadratic form x? +... + x2, n is isomorphic to C™, and (n)
is the polynomial algebra in m variables.

5.1. Theorem. If (m, V) is a finitely-generated admissible representation of g and K,
then every prime ideal in U(n) associated to V as a U(n)-module is stable with respect
to m.

This follows immediately from Theorems 2.3 and 4.5, since the elements of m
are derivations of U(n).

For any prime ideal P let ¥"(P) be the variety of points on which elements of P
vanish. The ideal P is stable with respect to m if and only if ¥"(P) is stable with
respect to the connected component of GO(m). Therefore, the varieties attached to
the possible primes associated to admissible representations of g are exactly the
closures of the orbits of GO(m). More precisely, the possible ¥°(P) are (1) when
m=1: the origin and all of C*; (2) when m=2: the origin, the two lines x +iy=0,
and all of C?;(3) when m23: the origin, the O-sphere, and all of C™ (this by Witt’s
theorem). Furthermore, in the case m=2 one can show by considering K,, as well
that the prime (x+iy) is an associated prime if and only if (x—iy) is.

Each of these prime ideals is contained in the maximal ideal corresponding to
the origin—in other words, the origin lies in the closure of every orbit of the
connected component of GO(m)— which is the ideal of U(n) generated by n itself
(cf. below). According to [1], Chapter IV, §1.2, Proposition 6, V embeds in its
localization at U(n)n; thus by [1], Chapter 11, § 2.2, Corollary 3, ¥, 0. By 2.3, 2.4,
and 3.3:

5.2. Corollary. If 7 is an irreducible admissible representation of g and K, then
there exists a continuous finite-dimensional representation (w, U) of M such that ©
may be embedded into Ind(w|P, G).

Dixmier has remarked that one can assemble a shorter proof of this fact by
considering Ann,, (V) alone (applying 4.4).

Note that by Krull’s theorem, the localization of V at U(n)n embeds in the
completion. This implies a property which is stronger than “V, +0”.

5.3. Corollary. If (w, V) is a finitely generated admissible representation of g and
K, then the canonical map from V into its completion at the ideal U(n)n is an
injection.

This result, unlike 5.2, uses the full force of Theorem 5.1, and in fact, is
equivalent to it.

Remarks. (a) When G=SL,(R), U(n) is a polynomial algebra in one variable.
Because every finitely generated module is then the sum of its torsion and free
submodules, our proofs are especially simple in this case.

(b) Even when n is not necessarily abelian, Corollary 5.3 makes sense, and in
fact the analysis of the asymptotic behavior of matrix coefficients mentioned
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earlier shows it to be true. We expect the completions at U(n)n to play an
important role in the theory of admissible representations. For example, one may
apply 5.3 to show quickly that any finitely generated admissible representation has
finite length, a sort of result hitherto accessible only through deep analytical
results of Harish-Chandra.

(c) To what extent can our techniques be adapted to the case of non-abelian n?
A great deal of commutative algebra may be carried over to the enveloping algebras
of nilpotent Lie algebras, but unfortunately not what we need, as an example of
Dixmier shows.

Let n=CX+CY+CZ

[X,Y]=Z, [X,Z]=[Y,Z]=0.

Let U=U(n), V=the U-module W/U(1+X). The annihilator of every non-zero
submodule of V'is 0, so 0 is the only associated prime of ¥ in the non-commutative
sense. However, V(n)=V and V,=0.

Our conclusion is that there is likely to exist some category of special
U(n)-modules for which the theory goes through, and that this category contains
the restriction of admissible representations of g—K to n. But we have no
substantial result in this direction.

References

1. Bourbaki,N.: Commutative Algebra. Reading: Addison-Wesley 1972

2. Casselman,W.: Matrix coeflicients of admissible representations. (To appear)

3. Casselman,W., Osborne,M.S.: The n-cohomology of representations with an infinitesimal charac-
ter. Compositio Mathematica 31, 219—227 (1975)

4. Harish-Chandra : Representations of semi-simple Lie groups II. Trans. Amer. Math. Soc. 76, 26—65
(1954)

S. Warner,G.: Harmonic analysis on semi-simple Lie groups I. Berlin, Heidelberg, New York:
Springer 1972

Received December 8, 1976



	
	The Restriction of Admissible Representations to n.
	Table of literature references



