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Characters and Jacquet Modules

W. Casselman

Department of Mathematics, University of British Columbia, Vancouver, Canada

Let k be a locally compact p-adic field with integers o, G the group of k-rational
points of a reductive algebraic group defined over k. In this paper I shall generalize a
recent result of Deligne [6] on the support of the character of an absolutely cuspidal
representation and relate the character of any finitely generated admissible
representation of G to that of its associated Jacquet modules.

1. First I must collect some facts about tori in G for which I have found no simple
reference. Let 4, be a maximal split torus in G, P, a minimal parabolic subgroup
containing A4, X the set of roots of G relative to A,, 4 the simple roots
corresponding to the choice of P4. The sets X and 4 may be identified with subsets of
the real vector space X =X(A4,)®R, where X(A4,) is the group of rational characters
of A,. Let W be the corresponding Weyl group. For 6< 4, set A;= ker(x) (x€0). I
define a standard torus of G to be any conjugate of one of these 4,. The standard tori
contained in A, for example, correspond bijectively to the faces of the linear
dissection of X determined by the root hyperplanes: to the face F corresponds Ay
=nker(a) («|/F =0).

1.1. Lemma. If A is any split torus of G and A is the smallest standard torus containing
A, then the centralizer Z;(A) of A is G is equal to that of A.

The case of a reductive group over an algebraically closed field is dealt with in
[10], and the general case follows directly from that since by [1] any standard torus
in G is also one in the extension of G to an algebraic closure.

1.2. Corollary. The maximal split subtorus of any maximal torus in G is a standard
torus.

Proof. Let T be the given maximal torus, A the maximal split subtorus of T. If Ais
the smallest standard torus containing A, then 1.1 implies that T and A commute,
hence that 4- T'is a torus of G. Since T is maximal, A C T. Since A is maximal split in
T, A=A.

In this situation, of course, T will also be a maximal torus of Z;(A). Incidentally,
since A is a standard torus it is conjugate to some A4, and Z;(A) is therefore
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conjugate to a reductive factor of the standard parabolic P,. In fact, it follows from
1.1 that if A is any split torus of G then Z;(A) is conjugate to a reductive factor of
some standard parabolic.

Recall that a semi-simple element xe G is said to be regular if Z ;(x) is a maximal
torus. The element x will clearly also be a regular element of any reductive subgroup
of G containing Z;(x).

2. Let ge G be regular, semi-simple. Let T be Z;(g), A the maximal split subtorus of
T, S the maximal anisotropic subtorus of T. Since T is isogenous to S x 4, some
positive power of g will factor as s-a with seS, ae 4.

The map x—|x| allows one to identify the real vector space X with the linear dual
of o/ =A,/A,(0)@R. In o/ the image of Ay ={xeA¢||a(x)|§1 for all aed} is a
fundamental chamber for the Weyl group, and hence there exists ye G such that
yay 'eA;. Let Q={aed|la(yay~')|=1}, and define P, to be the parabolic
subgroup y~'P,y. It has the Levi decomposition P,=M_ N, where N, is its
unipotent radical and M, =y~ 'Z;(A4,)y. It is clear that g is a regular semi-simple
element of M. Furthermore, it is easy to see from the construction that this P, and.
the one constructed by Deligne in [6] are the same.

Let N, be the unipotent radical of the parabolic P, -, opposite to P,

2.1. Lemma (Deligne). There exists a decreasing sequence {K;} of compact open
subgroups in G which form a basis for the neighborhoods of the identity and such that,
where N;=N,nK;, M\;=M,nK; N7 =N, nK;:

(@) K;=N; M,N,;

(b) gNig 'CN, gMyg~'=M,, g~ 'N;7gCN; ;

(c) If U, and U, are any two compact open subgroups of N, then there existsn=0
such that g"U g "CU,, and similarly for N~ and g~ '.

(d) In the Hecke algebra#(G,K,), for n=0:

(KgK)"=K,g"K;.

This is proven in [6].
From now on I shall fix g and set P=P,M=M, N=N,

3. Let (r, V) be a finitely generated admissible representation of G. Recall that the
Jacquet module associated to V and P is the space V}, defined as the largest quotient
of ¥ on which N acts trivially, together with the natural representation r,, of M on
this space. For any compact subgroup HCG, let %, be the operator
(meas H) ™! [, n(h)dh.

3.1. Lemma. (a) If veV is fixed by M;N; then Py(v)=P(v);
(b) The natural map from VX to VMt is surjective;

(c) The representation (ny, Vy) is a finitely generated admissible representation
of M.

This is proven in § 3 of [3]. Of course (a) is trivial. It plays a role in proving (b),
which in turn implies (c) almost immediately.
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3.2. Corollary. For any ve V¥ with image ue Vy, (meas K,gK,) " 'n(K,gK ;)v has image
Ty(g)u.

This follows from 2.1 and 3.1, since n(g)v is fixed by M;N; and
(meas K gK,)~*n(K gK Jo= Py (n(g)).

3.3. Proposition. For each K, there exists a space V,X'CV*' such that

(a) The projection from V.5 to V{'i is a linear isomorphism ;

(b) For each n20, V)i is stable with respect to n(K,g"K,) ;

(c) There exists n such that n(K,g"K V¥V
Proof. The argument is much like that used to construct the canonical liftings in § 4
of [3], but I shall repeat it.

Recall from [3] that for any compact subgroup U C N the space V(U) is that of
all ve V such that

fu n(updu=0,

and that Vj is the quotient of V by the union V(N) of all the V(U). Choose a fixed
compact open subgroup U N such that V(N)n V¥ CV(U) and N,CU.

3.4. Lemma. If g"Ug "S N, and ve V(N)n VX, then n(K,g"K Jv=0.

Proof. The vector n(K;g"K;)v differs from Z (n(g")v) by only a scalar. By 3.1, this
latter is equal to Zy(n(g")v). But

Py(n(g")w) = (const) [, n(x)n(g")vdx
=(const) m(g")f, -ny,gn T(x)0dx
=0.

Choose n to be large enough so that g"Ug "CN,, and define V,* to be
n(K,g"K,)VXi.

Proof of 3.3(a). First, surjectivity. Consider ue Vy":. Since g normalizes M;,
ntn(g~ "ue VM. By 3.1 there exists ve VX whose image in Vy is my(g ~")u. But then by
3.2, Z¢(n(g")v) has image u.

Second, injectivity. Suppose that ve V(N)NV,, say v=mn(Kg"KJvo, v,€ VX. By
the choice of U, ve V(U). Now v is also, up to a constant, equal to Zy (n(g")v,)
=Py (n(g")v,). Therefore

[y n(udu=0
= Jy m(wdu fy, n(n)n(g"odn,
= j v (wn(g™vdu
=11(g") | - nygnm(u)vodu

so vy€ V(N) also and v=0 by 3.4.

Proof of (b). The above argument is independent of large n, so that all the spaces
n(K,g"K;)V¥: have the same dimension. But for mZ=n, 2.1(d) implies that
(K g"K)VECn(K,g"K)VE.

Statement (c) is immediate from the definition.
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3.5. Corollary. For n>0,
Tr [(meas K,g"K,) ™ 'n(K,;g"K;)] = Tr [np(g, ) V4]

4. Let ¥(Z) be the space of all complex-valued functions on the integers. Define
1:%(Z)—>%(Z) by the formula

tF(x)=F(x—1).

A function Fe%(Z) is said to be Z-finite if it is contained in a finite-dimensional
subspace of ¢(Z) stable under 7, or equivalently if the subspace spanned by
{t"F|ne Z} is finite-dimensional. This condition is also equivalent to the existence of
a polynomial P(t)+0 such that P()F =0.

4.1. Lemma. Let F, and F, be two Z- finite functions. If there exists ne Z such that
F,(x)=F,(x) for all x=n, then F, =F,.

I leave this as an exercise.

The simplest example of a Z-finite function is F(n)=A", where AeC™. Also, of
course, any linear combination of Z-finite functions is Z-finite.

Let X be any endomorphism of a finite-dimensional complex vector space, and
suppose that its non-zero eigenvalues are 4,,...,4,. Forn2 1, Tr(X")=1] + ... +47;
the function n—Tr(X") may therefore be extended to a unique Z-finite function on
all of Z.

4.2. Corollary. If X and Y are two finite-dimensional endomorphisms such that Tr(X")
=Tr(Y") for n>0, then Tr(X")=Tr(Y") for all n=1.

5. The main result is now almost immediate. Adopt the notation of §3.
5.1. Lemma. For all n=1,
Tr[(meas K;g,K;)~ 'n(K;g"K;)]=Tr[(meas M,)" 'nn(g"™M))].

This is a corollary of 3.5 and 4.2.

According to a result of Harish-Chandra and Howe there exists a locally
constant function ch, defined on the open set of regular semi-simple elements of G
such that for any feCZ?(G) with support in this set

Tr(n(f)= J¢ S(x)ch (x)dx.

(The case when k has characteristic 0 is discussed in [2], [7], and [8]. In fact,
what is proven there under this assumption is the much deeper result that the
character of n—i.e. the functional on C®(G) which takes f to the trace of n(f)—is
determined by the function ch, on the regular semi-simple elements. The result
needed above is more elementary than this and has been recently established by
Harish-Chandra without assumption on the characteristic of k.)

This result applies as well to the Jacquet module ry. Therefore, setting f equal to
the characteristic function of K;gK; and letting i increase, one has:

5.2. Theorem. Let nt be a finitely generated admissible representation of G, g aregular
semi-simple element of G, P=P,=MN. Then

ch.(g)=ch,(9).
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5.3. Remarks. (a) If = is absolutely cuspidal then ny, =0 for all non-trivial N and one
recovers Deligne’s theorem.

6. Let G be a reductive group over R, g its Lie algebra, K a maximal compact
subgroup. There are two conjectures in this case which amount to an analogue of
the above theorem.

Conjecture 1. Let P=MN be a parabolic subgroup of G, m and n the Lie algebras of
M and N, Ky, =KnM. If (n,V) is a finitely generated admissible representation of
(g, K) then each homology group H,(n, V) is one of (m, K,,).

This is known to be true if P is minimal, or if n=0 (see [5]; for a few results on
the homology, see [4]). It is perhaps not too difficult to prove in general.

For any regular semi-simple element ge G one can define P= P, as for the p-adic
case. It is a classical theorem of Harish-Chandra that each finitely generated
admissible representation of (g, K) has a character a smooth function on the set of
such elements.

Conjecture 2. For any regular semi-simple g,

Z(— 1) ch(g|H{n,V))
Z(—1)ch(g|A'n)

ch.(g)=

For the case of P, minimal, this conjecture is due to Osborne [9], and has been

verified in an ad hoc manner for a number of cases. When V is finite-dimensional
this is almost trivially true and plays a role in Kostant’s proof of the Weyl character
formula.

Note added in proof: Several people have noticed that conjecture 1 is easy. Conjecture 2 has been
proven by H. Hecht and W. Schmid.
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