

Werk

Titel: Characters and Jacquet Modules.

Autor: Casselman, W.

Jahr: 1977

PURL: https://resolver.sub.uni-goettingen.de/purl?235181684_0230|log24

Kontakt/Contact

<u>Digizeitschriften e.V.</u> SUB Göttingen Platz der Göttinger Sieben 1 37073 Göttingen

Characters and Jacquet Modules

W. Casselman

Department of Mathematics, University of British Columbia, Vancouver, Canada

Let k be a locally compact p-adic field with integers \mathfrak{o} , G the group of k-rational points of a reductive algebraic group defined over k. In this paper I shall generalize a recent result of Deligne [6] on the support of the character of an absolutely cuspidal representation and relate the character of any finitely generated admissible representation of G to that of its associated Jacquet modules.

- 1. First I must collect some facts about tori in G for which I have found no simple reference. Let A_{ϕ} be a maximal split torus in G, P_{ϕ} a minimal parabolic subgroup containing A_{ϕ} , Σ the set of roots of G relative to A_{ϕ} , Δ the simple roots corresponding to the choice of P_{ϕ} . The sets Σ and Δ may be identified with subsets of the real vector space $X = X(A_{\phi}) \otimes \mathbf{R}$, where $X(A_{\phi})$ is the group of rational characters of A_{ϕ} . Let W be the corresponding Weyl group. For $\theta \subseteq \Delta$, set $A_{\theta} = \bigcap \ker(\alpha)$ ($\alpha \in \theta$). I define a standard torus of G to be any conjugate of one of these A_{θ} . The standard tori contained in A_{ϕ} , for example, correspond bijectively to the faces of the linear dissection of X determined by the root hyperplanes: to the face F corresponds $A_{F} = \bigcap \ker(\alpha)$ ($\alpha \mid F = 0$).
- **1.1. Lemma.** If A is any split torus of G and \bar{A} is the smallest standard torus containing A, then the centralizer $Z_G(A)$ of A is G is equal to that of \bar{A} .

The case of a reductive group over an algebraically closed field is dealt with in [10], and the general case follows directly from that since by [1] any standard torus in G is also one in the extension of G to an algebraic closure.

1.2. Corollary. The maximal split subtorus of any maximal torus in G is a standard torus.

Proof. Let T be the given maximal torus, A the maximal split subtorus of T. If \overline{A} is the smallest standard torus containing A, then 1.1 implies that T and \overline{A} commute, hence that $A \cdot T$ is a torus of G. Since T is maximal, $\overline{A} \subseteq T$. Since A is maximal split in T. $\overline{A} = A$.

In this situation, of course, T will also be a maximal torus of $Z_G(A)$. Incidentally, since A is a standard torus it is conjugate to some A_{θ} , and $Z_G(A)$ is therefore

W. Casselman 102

conjugate to a reductive factor of the standard parabolic P_{θ} . In fact, it follows from 1.1 that if A is any split torus of G then $Z_G(A)$ is conjugate to a reductive factor of some standard parabolic.

Recall that a semi-simple element $x \in G$ is said to be regular if $Z_G(x)$ is a maximal torus. The element x will clearly also be a regular element of any reductive subgroup of G containing $Z_G(x)$.

2. Let $g \in G$ be regular, semi-simple. Let T be $Z_G(g)$, A the maximal split subtorus of T, S the maximal anisotropic subtorus of T. Since T is isogenous to $S \times A$, some positive power of g will factor as $s \cdot a$ with $s \in S$, $a \in A$.

The map $\chi \rightarrow |\chi|$ allows one to identify the real vector space X with the linear dual of $\mathscr{A} = A_{\phi}/A_{\phi}(\mathfrak{o}) \otimes \mathbf{R}$. In \mathscr{A} the image of $A_{\phi}^- = \{x \in A_{\phi} | |\alpha(x)| \le 1 \text{ for all } \alpha \in A\}$ is a fundamental chamber for the Weyl group, and hence there exists $y \in G$ such that $yay^{-1} \in A_{\phi}^{-}$. Let $\Omega = \{\alpha \in \Delta | |\alpha(yay^{-1})| = 1\}$, and define P_g to be the parabolic subgroup $y^{-1}P_{\Omega}y$. It has the Levi decomposition $P_g = M_gN_g$, where N_g is its unipotent radical and $M_g = y^{-1}Z_G(A_{\Omega})y$. It is clear that g is a regular semi-simple element of M_q . Furthermore, it is easy to see from the construction that this P_q and the one constructed by Deligne in [6] are the same.

Let N_q^- be the unipotent radical of the parabolic P_{q-1} opposite to P_q .

- **2.1. Lemma** (Deligne). There exists a decreasing sequence $\{K_i\}$ of compact open subgroups in G which form a basis for the neighborhoods of the identity and such that, where $N_i = N_a \cap K_i$, $M_i = M_a \cap K_i$, $N_i^- = N_a^- \cap K_i$:

 - (a) $K_i = N_i^- M_i N_i$; (b) $g N_i g^{-1} \subseteq N_i$, $g M_i g^{-1} = M_i$, $g^{-1} N_i^- g \subseteq N_i^-$;
- (c) If U_1 and U_2 are any two compact open subgroups of N, then there exists $n \ge 0$ such that $g^n U_1 g^{-n} \subseteq U_2$, and similarly for N^- and g^{-1} .
 - (d) In the Hecke algebra $\mathcal{H}(G, K_i)$, for $n \ge 0$:

$$(K_i g K_i)^n = K_i g^n K_i$$
.

This is proven in [6].

From now on I shall fix g and set $P = P_a$, $M = M_a$, $N = N_a$.

- 3. Let (π, V) be a finitely generated admissible representation of G. Recall that the Jacquet module associated to V and P is the space V_N defined as the largest quotient of V on which N acts trivially, together with the natural representation π_V of M on this space. For any compact subgroup $H \subseteq G$, let \mathscr{P}_H be the operator $(\text{meas } H)^{-1} \int_{H} \pi(h) dh$.
- **3.1. Lemma.** (a) If $v \in V$ is fixed by $M_i N_i^-$ then $\mathcal{P}_{N_i}(v) = \mathcal{P}_{K_i}(v)$;
 - (b) The natural map from V^{K_i} to V^{M_i} is surjective;
- (c) The representation (π_N, V_N) is a finitely generated admissible representation of M.

This is proven in § 3 of [3]. Of course (a) is trivial. It plays a role in proving (b), which in turn implies (c) almost immediately.

3.2. Corollary. For any $v \in V^{K_i}$ with image $u \in V_N$, (meas $K_i g K_i$)⁻¹ $\pi(K_i g K_i)v$ has image $\pi_N(g)u$.

This follows from 2.1 and 3.1, since $\pi(g)v$ is fixed by $M_iN_i^-$ and (meas $K_i g K_i$)⁻¹ $\pi (K_i g K_i) v = \mathscr{P}_K(\pi(g) v)$.

- **3.3. Proposition.** For each K_i there exists a space $V_g^{K_i} \subseteq V^{K_i}$ such that (a) The projection from $V_g^{K_i}$ to $V_N^{M_i}$ is a linear isomorphism; (b) For each $n \ge 0$, $V_g^{K_i}$ is stable with respect to $\pi(K_i g^n K_i)$;

 - (c) There exists n such that $\pi(K_i g^n K_i) V^{K_i} \subseteq V_a^{K_i}$.

Proof. The argument is much like that used to construct the canonical liftings in §4 of [3], but I shall repeat it.

Recall from [3] that for any compact subgroup $U \subseteq N$ the space V(U) is that of all $v \in V$ such that

$$\int_{U} \pi(u)vdu = 0,$$

and that V_N is the quotient of V by the union V(N) of all the V(U). Choose a fixed compact open subgroup $U \subseteq N$ such that $V(N) \cap V^{K_i} \subseteq V(U)$ and $N_i \subseteq U$.

3.4. Lemma. If $g^nUg^{-n} \subseteq N_i$ and $v \in V(N) \cap V^{K_i}$, then $\pi(K_ig^nK_i)v = 0$.

Proof. The vector $\pi(K_i g^n K_i)v$ differs from $\mathscr{P}_{K_i}(\pi(g^n)v)$ by only a scalar. By 3.1, this latter is equal to $\mathcal{P}_{N_i}(\pi(g^n)v)$. But

$$\mathcal{P}_{N_i}(\pi(g^n)v) = (\text{const}) \int_{N_i} \pi(x) \pi(g^n) v dx$$

= (\text{const}) \pi(g^n) \int_{g^{-n}N_ig^n} \pi(x) v dx
= 0.

Choose n to be large enough so that $g^n U g^{-n} \subseteq N_i$, and define $V_a^{K_i}$ to be $\pi(K_i g^n K_i) V^{K_i}$.

Proof of 3.3(a). First, surjectivity. Consider $u \in V_N^{M_i}$. Since g normalizes M_i , $\pi_N(g^{-n})u \in V_N^{M_i}$. By 3.1 there exists $v \in V^{K_i}$ whose image in V_N is $\pi_N(g^{-n})u$. But then by 3.2, $\mathcal{P}_{K}(\pi(g^{n})v)$ has image u.

Second, injectivity. Suppose that $v \in V(N) \cap V_n$, say $v = \pi(K_i g^n K_i) v_0$, $v_0 \in V^{K_i}$. By the choice of $U, v \in V(U)$. Now v is also, up to a constant, equal to $\mathcal{P}_{K}(\pi(g^{n})v_{0})$ $=\mathscr{P}_{N_i}(\pi(g^n)v_0)$. Therefore

$$\int_{U} \pi(u)v du = 0$$

$$= \int_{U} \pi(u) du \int_{N_{i}} \pi(n_{i}) \pi(g^{n}) v_{0} dn_{i}$$

$$= \int_{U} \pi(u) \pi(g^{n}) v_{0} du$$

$$= \pi(g^{n}) \int_{a^{-n}Ua^{n}} \pi(u) v_{0} du$$

so $v_0 \in V(N)$ also and v = 0 by 3.4.

Proof of (b). The above argument is independent of large n, so that all the spaces $\pi(K_i g^n K_i) V^{K_i}$ have the same dimension. But for $m \ge n$, 2.1(d) implies that $\pi(K_i g^m K_i) V^{K_i} \subseteq \pi(K_i g^n K_i) V^{K_i}$.

Statement (c) is immediate from the definition.

104 W. Casselman

3.5. Corollary. For $n \gg 0$,

$$\operatorname{Tr}\left[\left(\operatorname{meas} K_{i}g^{n}K_{i}\right)^{-1}\pi\left(K_{i}g^{n}K_{i}\right)\right] = \operatorname{Tr}\left[\pi_{N}(g_{n})|V_{N}^{M_{i}}\right].$$

4. Let $\mathscr{C}(\mathbf{Z})$ be the space of all complex-valued functions on the integers. Define $\tau : \mathscr{C}(\mathbf{Z}) \rightarrow \mathscr{C}(\mathbf{Z})$ by the formula

$$\tau F(x) = F(x-1)$$
.

A function $F \in \mathcal{C}(\mathbf{Z})$ is said to be **Z**-finite if it is contained in a finite-dimensional subspace of $\mathcal{C}(\mathbf{Z})$ stable under τ , or equivalently if the subspace spanned by $\{\tau^n F | n \in \mathbf{Z}\}$ is finite-dimensional. This condition is also equivalent to the existence of a polynomial $P(\tau) \neq 0$ such that $P(\tau)F = 0$.

4.1. Lemma. Let F_1 and F_2 be two **Z**-finite functions. If there exists $n \in \mathbb{Z}$ such that $F_1(x) = F_2(x)$ for all $x \ge n$, then $F_1 = F_2$.

I leave this as an exercise.

The simplest example of a **Z**-finite function is $F(n) = \lambda^n$, where $\lambda \in C^{\times}$. Also, of course, any linear combination of **Z**-finite functions is **Z**-finite.

Let X be any endomorphism of a finite-dimensional complex vector space, and suppose that its non-zero eigenvalues are $\lambda_1, \ldots, \lambda_r$. For $n \ge 1$, $\operatorname{Tr}(X^n) = \lambda_1^n + \ldots + \lambda_r^n$; the function $n \to \operatorname{Tr}(X^n)$ may therefore be extended to a unique Z-finite function on all of Z.

- **4.2. Corollary.** If X and Y are two finite-dimensional endomorphisms such that $Tr(X^n) = Tr(Y^n)$ for $n \ge 0$, then $Tr(X^n) = Tr(Y^n)$ for all $n \ge 1$.
- 5. The main result is now almost immediate. Adopt the notation of § 3.
- **5.1. Lemma.** For all $n \ge 1$,

$$Tr[(\text{meas } K_i g_n K_i)^{-1} \pi(K_i g^n K_i)] = Tr[(\text{meas } M_i)^{-1} \pi_N(g^n M_i)].$$

This is a corollary of 3.5 and 4.2.

According to a result of Harish-Chandra and Howe there exists a locally constant function ch_{π} defined on the open set of regular semi-simple elements of G such that for any $f \in C_c^{\infty}(G)$ with support in this set

$$\operatorname{Tr}(\pi(f)) = \int_G f(x) c h_{\pi}(x) dx$$
.

(The case when k has characteristic 0 is discussed in [2], [7], and [8]. In fact, what is proven there under this assumption is the much deeper result that the character of π —i.e. the functional on $C_c^{\infty}(G)$ which takes f to the trace of $\pi(f)$ —is determined by the function ch_{π} on the regular semi-simple elements. The result needed above is more elementary than this and has been recently established by Harish-Chandra without assumption on the characteristic of k.)

This result applies as well to the Jacquet module π_N . Therefore, setting f equal to the characteristic function of K_igK_i and letting i increase, one has:

5.2. Theorem. Let π be a finitely generated admissible representation of G, g a regular semi-simple element of G, $P = P_a = MN$. Then

$$ch_{\pi}(g) = ch_{\pi_N}(g)$$
.

- **5.3. Remarks.** (a) If π is absolutely cuspidal then $\pi_N = 0$ for all non-trivial N and one recovers Deligne's theorem.
- **6.** Let G be a reductive group over R, g its Lie algebra, K a maximal compact subgroup. There are two conjectures in this case which amount to an analogue of the above theorem.

Conjecture 1. Let P = MN be a parabolic subgroup of G, m and n the Lie algebras of M and N, $K_M = K \cap M$. If (π, V) is a finitely generated admissible representation of (g, K) then each homology group $H_n(n, V)$ is one of (m, K_M) .

This is known to be true if P is minimal, or if n=0 (see [5]; for a few results on the homology, see [4]). It is perhaps not too difficult to prove in general.

For any regular semi-simple element $g \in G$ one can define $P = P_g$ as for the p-adic case. It is a classical theorem of Harish-Chandra that each finitely generated admissible representation of (g, K) has a character a smooth function on the set of such elements.

Conjecture 2. For any regular semi-simple g,

$$ch_{\pi}(g) = \frac{\Sigma(-1)^{i} ch(g|H_{i}(n, V))}{\Sigma(-1)^{i} ch(g|\Lambda^{i}n)}.$$

For the case of P_g minimal, this conjecture is due to Osborne [9], and has been verified in an *ad hoc* manner for a number of cases. When V is finite-dimensional this is almost trivially true and plays a role in Kostant's proof of the Weyl character formula.

Note added in proof: Several people have noticed that conjecture 1 is easy. Conjecture 2 has been proven by H. Hecht and W. Schmid.

References

- 1. Borel, A., Tits, J.: Groupes réductifs. Publ. Math. I.H.E.S. 55-151 (1965)
- Cartier,P.: Les représentations des groupes réductifs p-adiques et leurs caracteres. Seminaire Bourbaki No. 471
- Casselman, W.: Introduction to the theory of admissible representations of p-adic reductive groups. To appear
- Casselman, W., Osborne, M.S.: The n-cohomology of representations with an infinitesimal character. Comp. Math. 31, 219—227 (1975)
- 5. Casselman, W., Osborne, M.S.: The restriction of an admissible representation to n (to appear)
- Deligne, P.: Le support du caractere d'une représentation supercuspidale (to appear in the Comptes Rendues de l'Académie des Sciences)
- 7. Harish-Chandra: The characters of reductive p-adic groups (to appear)
- 8. Howe, R.: The Fourier transform and germs of characters. Math. Ann. 208, 305-322 (1974)
- 9. Osborne, M.S.: Thesis, Yale, 1973
- Springer, T. A., Steinberg, R.: Conjugacy classes. In Seminar on algebraic groups and related finite groups. Berlin, Heidelberg, New York: Springer 1970

