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Normal Surface Singularities with C* Action

H. Pinkham

Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

1. Introduction

Let X be an affine algebraic variety (we always work over the complex numbers C)
with affine coordinate ring A. It is well known that X admits a C* action if and only
if A admits a grading A =@ ,A4,, where as usual 4,-A4,CA4,,,. If A,=0 for k<0 and
A,=C, we say, following Orlik-Wagreich, that the C* action is good. In geometric

terms this implies that the point PeX corresponding to the maximal ideal (P A4, 1s
k>0
the only fixed point of the C* action. P is called the vertex of X.

In this paper we study the case where X is also two dimensional and normal. In
particular P is the only point of X which can be singular. We say for short that X isa
normal C* surface singularity.

The simplest example of such singularities is a cone over a smooth proper curve
C. By definition its affine coordinate ring can be written

D H(C, 2%,

kz0
where % is an ample invertible sheaf of rank 1 on C. We denote this affine variety by
X(C, #). Here is another description of X(C, ¥): let F(C, #)—C be the affine line
bundle over C with sheaf of sections ¥ ~ 1. Then the zero section of F(C, #)—C has
negative self-intersection and therefore can be contracted analytically, and actually
algebraically. X(C, &) is the result of the contraction.

We will first prove

Theorem 1.1. Let X be any normal C* surface singularity. Then there exists a smooth
proper curve C', a finite group G of automorphisms of C' and a G-invariant, ample
invertible sheaf of rank 1 %" on C’ such that

a) G acts on X(C', "), freely except at the vertex.
b) X is analytically isomorphic to the quotient of X(C', ¥") by G.
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This theorem strengthens a result announced by Dolgachev [4]: his result is the
same as ours except that he does not have a), which is essential, however, for the
applications we have in mind. Dolgachev mentions his proof uses singular Seifert
fibrations ; an elementary proof along these lines can be reconstructed from [8],
proof of 3.6.1 and [9], Theorem 4.3. The addition of a) does not present serious
difficulties, and presumably could also be obtained by an extension of Dolgachev’s
method. We present a proof, however, for the sake of completeness, in Section 3.
The idea of the proofis to reconstruct X via data given by a certain resolution of X.
This resolution is described, following Orlik-Wagreich [8] in Section 2.

In the rest of this paper we draw some conclusions from 1.1 which will also be
needed in our study of the deformation theory of X. In Section 4 we construct a
natural C* compactification of X and determine its singularities. In Section 5 we
obtain a nice description of the graded pieces A, of the affine ring of X in terms of
some divisors D® on the “central curve” E of the resolution of X. The sheaves
O0-D") play for X the same role as #* on the cone X(C, ¥). In particular we
compute the genus of X from the cohomology of the D®. It is important to note that
the D® can be defined independently of Theorem 1.1. Finally in Section 6 we
illustrate the results of Section 5 by computing the equations of X in a few cases.

In a forthcoming paper we apply these results to the deformation theory of X.
Note finally that we have restricted to C for two reasons: to avoid difficulties when
taking quotients by finite groups, and to apply Fenchel’s conjecture (3.1) which is
established by transcendental methods.

2. The Minimal Good Resolution of X

A resolution Z—X of a surface singularity X is good, if

1) All the components of the exceptional divisor of Z—X are smooth and
intersect transversally.

2) Not more than 2 components pass through any given point

3) 2 different components intersect at most once.

It is well known (and easy to see) that there is a minimal resolution having these
properties.

In this section we describe the minimal good resolution of a normal C* surface
singularity, following Orlik-Wagreich [8].

The weighted dual graph of a good resolution is the graph each vertex of which
represents a component of the exceptional divisor, weighted by its self-intersection.
Two vertices are connected if the corresponding components intersect.

In the minimal good resolution of a normal C* surface singularity there is at
most one component of the exceptional divisor which has positive genus and/or
intersects more than two other components. Such a component, if one exists, is
called the central curve and is denoted E (if there is no central curve then X is a cyclic
quotient singularity : see 2.2 below). The dual graph of the minimal good resolution
of X is therefore a star, that is, a connected tree where at most one vertex is
connected to more than 2 other vertices. The connected components of the graph
minus the central curve are called the branches of the graph and are indexed by i,

1<i<n. The curves of the i-th branch are denoted by E;;, 1 <j<r; where E;
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intersects E and E;; intersects E; ;, . Letb=—E-E,and b;;= —E;;-E;;. Then b;; 2 2
and b>1.

. 1
Finally, set d;/e;=b;, —

bia—

=[bis "'9bir,]

with e; <d,, and ¢; and d; relatively prime.
Using the results of [8], it is easy to see we have the following

Theorem 2.1. Let X be a normal C* surface singularity. The singularity of X at its
vertex is determined up to analytic isomorphism by
i) the weighted dual graph of the minimal good resolution.
If there is no central curve this suffices (see 2.2). Otherwise we need
il) the analytic type of the central curve E.
iii) The conormal sheaf ¥ of E in the resolution.
iv) The points P,=ENE,, on E.

We call i}-1v) the data of X. Conversely given any set of data as in the theorem,
there exists a (unique) normal C* surface singularity having this data, provided that
the intersection matrix given by the graph in i) is negative definite; this condition
can be written

b—Y e/d;>0. (*)

Throughout this paper ) means sum over i, 1 <i<n.
i
In case there is no central curve we have the following well known result

(Brieskorn [2]):

Lemma 2.2. Let X be the minimal good resolution of any normal surface singularity X
such that all the components of the exceptional divisor are rational and the weighted
dual graph is

Letd/e=[b,,...,b,], e and d relatively prime. Then X is analytically isomorphic to the
quotient of C* by the cyclic group G of order d, acting by (x, y)—({x, (°y), where { is a
d-th root of unity.

We call this singularity the cyclic quotient singularity of type (d, e). Notice that
the action of G is free except at the origin of C2. Therefore the lemma yields a proof
of Theorem 1.1 in the case there is no central curve: take C'=P!, ¥'=((1) and G
acting on (’(1) as above. (Actually of course 1.1 is clear for all quotient singularities.)
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2.3. Therefore from now on we restrict to the case there is a central curve.

Another way of characterizing the singularities of 2.2 is that they are precisely
the normal surface singularities with a C* x C* action: [7], p. 35.

3. Proof of the Theorem

We continue with the notation of Sections 1 and 2. To prove Theorem 1.1 we must
first construct a cone X(C', &#’). The first step is

Fenchel’s conjecture 3.1. (Bundgaard-Nielsen [3] and Fox [5]) Let C be a smooth
proper curve over C, P, ..., P, distinct points of C, and d,, ..., d, integers greater than
1. Then there exists a smooth proper curve C' and a Galois cover m: C'—C such that
i) there is ramification only above the P, 1 <i<n.
i) The ramification index of any point Q; above P; (n(Q,)=P,) is d,.

Condition ii) means that the stabilizer subgroup of Q; has order d;; in other
words, if d is the order of the Galois group G of the cover, then there are d/d; points
above P,. Note that in 3.1 the order of G is not specified. We only know that d is a
multiple of all the d,.

We will apply 3.1 with C=E, the central curve in the resolution of X, P, and d,
keeping the same meaning as in Section 2. To avoid double indices we just write Q,

for a point above P,. ) will always mean sum over all Qe C’ such that n(Q)=P,.
Q.

3.2. We apply the Hurwitz formula to n: C'—C. If K is a canonical divisor on C,
then
K’:n_l(K)+ZZ(dl.—1)Q‘. (1)
i Q
is a canonical divisor on C'. Thus if g (resp. g') is the genus of C (resp. C’),

2g' —2=d(2g—2)+ ), d(d;—1)/d, (2)
Any divisor on C' invariant under G can be written
n '(D)- Y Y f,0; with 0=f,<d,, (3)
iQ

for some divisor D on C. Such a divisor is of positive degree when
degree D> Y fi/d;. 4)

3.3. To any divisor D on C we associate an invertible sheaf of rank 1, O(D), in the
usual way (cf. Serre [12], p. 20). Conversely any invertible sheaf of rank 1 can be
written in this way. For later on it is useful to recall that H%(C,0.(D)) can be
identified with the meromorphic functions f on C such that (f)= — D, where (f) is
the principal divisor associated to f. Note that the degree of O (D) is just the degree
of D.
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3.4. We now apply 3.1 to C=E, etc. Recall that .# is the conormal sheaf of E, the
central curve of the resolution of X. Write % = (% (D) for some divisor D on E. The
degree of D is b. Let D" be the divisor on C’ given by

D'=n"'(D)- ).} e0;.
i Q

where e¢; is as in Section 2. Finally set ¥’ =0(D’). Since D’ is invariant under G, G
acts on ¢’ and hence on F(C', ') in a natural manner.

We will show that C', G, and ¥’ as above satisfy Theorem 1.1. First note that by
(*) of Section 2 and formula (4) of 3.2, %" has positive degree and is therefore ample.
Thus we can contract the zero section of F(C’, #’), which we call C’ by abuse of
language, thus obtaining X(C’, #’). Let F be the quotient of F(C', ¢’) by G. The
image Cin F of the zero section of F(C’, &) is isomorphic to E, and the restriction of
the quotient map F(C’, #')— F to the zero section C’is just 7: C'—C. The following
diagram summarizes the situation.

Q.eC'CF(C, %" )
/ % .// \contractlon of C
P.eCCF X(C,Z)
contraction quotient by G
of C X'

We must show that the action of G on X(C’, #”)is free outside of the vertex and that
X' is isomorphic to X.

Lemma 3.5. G acts freely on F(C', ') except at the points Q,. Therefcie the quotient
F is smooth except at the points P,. At P, F has a cyclic quotient singularity of type
(d,e,).

We defer the proof. Note that the lemma implies that G acts freely on X(C’, &)
minus the vertex. To show X' is isomorphic to X we use Theorem 2.1 : it is sufficient
to show that the data of X" is the same as that of X. Therefore we must construct the
minimal good resolution of X'. It is not hard to see that resolution is just the minimal
resolution F of the cyclic quotient singularities of F. Let C be the proper transform
of C in F. By Lemmas 3.5 and 2.2 the data of X" and X will be the same, if we can
show

Lemma 3.6. The conormal bundle of C in F is isomorphic to that of E in the minimal
good resolution of X, via the isomorphism C—C =E induced by F—F.

Thus the theorem is proved once we have established Lemmas 3.5 and 3.6. Note
that the degree of the conormal bundle is computed in [9], Theorem 4.3.

Proof of 3.5. We first exhibit the action of G on F(C', #’) explicitly.

Let U, 1<i<n be a cover of C’ by G-invariant Zariski open sets such that
P,en(U,), and P;¢n(U)), i+j. Let h,e'(U;, Oy, be a local equation for the divisor

Y Q.. h; transforms under ge G by
Q.

gth)=ah;, forsome a,el(U,Of). (%)
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Since Y d;Q,=n""(P;), we can choose h; so that h; raised to the power d, is invariant

Qi
under G. Therefore a,, is a d;-th root of unity.
Let f,;el'(U;nU; 0*) be transition functions for &’ Then, up to a factor
invariant under G,

fii=hsihs.
Therefore f;; transforms under ge G by

g(fij)=ag fi;a;,° .
This shows, as expected, that the class of {f;;} in HY(C', 0*) is the same as that of
{9(f:)}-

Let ¢; be the fibre coordinate of F(C', ¥’) above U,. By definition the glueing

over U;nU; is given by t;= ft;. Since the action of G must be compatible with the
glueing, we must have

g(t)=agt;. (%)

We can now prove the lemma. It is clear that the action of G is free except
possibly on the fibres above the Q,, n(Q,) = P;. Pick one such point Q,. Let G’ be the
subgroup of G stabilizing it. We need only consider what happens when ge G'. G' is
cyclic of order d,. Let g be a generator of it. Then a;, is a primitive d;-th root of unity,
for otherwise the index of ramification of n: C'—C at P; would be less than d,. By
(*+) this shows that the action of G on F(C’, ¢’) is free on the fibre above Q, for t; +0,
thus proving the first assertion of the lemma. On the other hand notice that
uniformizing parameters at Q; are t; and h;. By (*) and (*x), and since a,, is a primitive
d-th root of unity for a generator g of G’, we see that the action of G gives rise to a
cyclic quotient singularity of type (d,, e;) at P,e F. This concludes the proof.

Proof of 3.6.

Lemma 3.7. Consider the (possibly singular ) surface W’ obtained as follows : for each
iblowup F(C', #’) at Q,, then blow up again at the intersection of the proper transform
of the zero section C' with the first exceptional divisor, then again at the intersection
of the proper transform of C’ with the new exceptional divisor, and so on, until e; blow
ups have been performed at each Q,. Call the surface thus obtained W'. The weighted
dual graph of the exceptional divisor of W'—F(C’, ¥’) above Q; is

O ) O ..... —
-1 —2 —2

——

e;—1

and only the — 1 curve intersects the proper transform of C'. Blow down all the curves
with self-intersection— 2, and call the surface obtained W'. Then G acts on W', and the
quotient W dominates F and is dominated by F (in other words we have morphism
F—-W-—F). Furthermore W is smooth along the proper transform C, of CCF.

3.7 is similar to [8], Lemma 3.6.3. Before proving it, let us complete the proof of
3.6, and hence of Theorem 1.1.
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Let C’ be the proper transform of C'C F(C', &) in W'. Since e; blow ups were
performed for each Q; above P; and for all i, and since the conormal sheaf of C’ in
F(C', %) is by definition

F'=0c(n"'(D)— Z § eQ0.),
the conormal sheaf of C’ in W' is O&(n~'(D)), with the obvious abuse of language
consisting of identifying divisors on C’ and C’. By 3.7 the blowing down of W' to W’
is an isomorphism in a neighborhood of (', so that the conormal sheaf does not
change. Finally, since W is smooth along C,, the conormal sheaf of C, in W is
O¢(D); since F—W is an isomorphism along C,, (by 3.7 again), we are done.

Proof of 3.7. It is clear that the statement of 3.7 is local around each one of the Q..
One then notices that W is just the first step in Fujiki’s resolution of the cyclic
quotient singularities X,, of type (d,e) [6]. His resolution is the geometric
realization of the desingularization of X ;, by toroidal embeddings [7] p. 35. X, is
the quotient of X =C? by the cyclic group G, of order d acting on X by
(31, x,)({x,,{°x,), { a d-th root of unity. Let Y=C? be a cover of X given by x,
=y, X,=)5 X is the quotient of Y by the cyclic group G, acting by
(1, y2)=(y1,ny,), n an e-th root of unity. Let Y’ be the blow up of the origin of Y, W’
the quotient of Y’ by G,, and W the quotient of W’ by G,. Wis called the first step of
the resolution of X,,. W has at most one singularity, which is a cyclic quotient.
Repeating this construction to its singularity, and so on, we eventually reach the
minimal resolution of X,,. Furthermore W' has only a (e,e—1) cyclic quotient
singularity. From these facts we deduce 3.7 without difficulty. For more details see

[6] or [11].

4. The C* Compactification of X

X is as always a normal C* surface singularity. We can compactify X in a natural
way using the C* action by taking X = Proj(A[t]), where t is given degree 1 for the
grading of A[t]. Of course X —X =E__ is isomorphic to E, the central curve of the
resolution of X. If there is no central curve (Lemma 2.2), then X can be studied by
taking the quotient of P? by the group G acting as in 2.2. We leave this case to the
reader, and now assume there is a central curve.

We study the singularities of X along E_, by applying 1.1. Let F(C’, #”) be the
projective line bundle associated to F(C', #’) by compactification of the fibres, and
X(C', &) the contraction of the zero section of F(C’, #’). G acts on F(C’, #') and
X(C', #'), and it is easy to see that X is just the quotient of X(C’, #’) by G. Now
X(C', ¥)-X(C,&')=C., is isomorphic to C’' in an obvious way, and via this
isomorphism we obtain points Qe C/,.

Lemma 4.1. G acts freely onX(C', ') except at the vertex and Q). The quotient X has
a cyclic quotient singularity of type (d;, d;,—e;) at the image P; of Q}, 1<i<n.

The proofis the same as that of 3.5, noting that local parameters at Q; are h; and
1/t,, in the notation of 3.5.
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Now let E be the proper transform of E, in the minimal resolution X of the
singularities of X on E .

Lemma 4.2. The normal sheaf of E, inX is isomorphic to O(D— Y P,) via the obvious
isomorphisms E_>E_>E.

The proof is the same as that of 3.6.
This gives a complete description of X, which will be used when we study
deformations of X. This should be compared to [10].

5. The Cone-like Structure of X

Recall that the affine ring of X is 4= (P A,. We continue to use the notation of
k=0

Section 2. For any k let D™ be the divisor on E:
DW=kD— Y {ke;/d;}P;, (%)

where D is any divisor such that Og(D) is the conormal sheaf ¥ of E, and for any
acR, {a} is the least integer greater than, or equal to a. Ifa group G acts linearly on a
vector space V, denote by V¢ the subvector space of invariants.

Theorem 5.1. A, =H(E, 0 4(D"V)).
Proof. Theorem 1.1 shows that 4, = H°(C’, 0.(kD’))® where D' is as in 3.4. We have

the following easy

Lemma 5.2. Let n: C'—C be a Galois extension of smooth proper curves with group
G, D a divisor on C’ invariant under G and D the greatest divisor of C such that n~*(D)
<D. Then

H(C,00(D))>H (C', 0 (D))",
where the isomorphism is the pullback of meromorphic functions (cf. 3.3).

To prove Theorem 5.1, just notice that D*) is the greatest divisor on E such that
n~Y(D®)<kD'. To see this recall that n~ '(P;)=d; ) Q,. Thus 5.2 proves 5.1.

Q.

Conversely, given a smooth proper curve E, a divisor D on E, points P;, 1 Si<n,
and pairs of integers (d,, ¢;), ; <d; and e; and d, relatively prime, we can form the
divisor D® as in (x). Since D® + D® < D**D (because {a} + {b}={a+b}),

@ H(E,0,D"Y))

k=0
is a graded algebra. If degree D> ) e,/d,, this is the graded ring of the normal C*

i
surface singularity with the appropriate data. Notice that the construction does not
involve the group G. This provides a convenient method for obtaining the affine
ring of such singularities from the data of their minimal good resolution. Examples
are worked out in the next section.
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Definition 5.3. The genus of a surface singularity X is the dimension of R'f, 0,
where f: Z—X is any resolution of X [1].

If the genus is 0, X is said to be rational. If the genus is 1, X is strongly elliptic. 1f X
is affine, then R'f,0,=H'(Z,,) by the Leray spectral sequence.

Let X be once again a normal C* surface singularity, f: F—»X the resolution
constructed in Section 3. f factors through

F&FhYX .

Lemma 5.4. R'g,0z=0, so that H'(F,0z)=H'(F, 0}).

The first statement follows because the singularities of F, being cyclic quotient
singularities, are rational [2]. The second is an immediate consequence of the Leray
spectral sequence.

Lemma 5.5. H'(F,0p)=H'(F(C', &), Opc. )= P H(C', L™C.
k=0
The proof is immediate from the definitions.

Lemma 5.6. H'(C', #')¢ = HY(E, 0 (D™).
E

Since #'=0.(D"), H'(C', £"*)=H°C',0.(K'—kD')), where K’ is a canonical
divisor on C'. Write out K’ according to the Hurwitz formula [3.2, Formula (1)] and
D' according to 3.4. Finally apply 5.2, noting that D® =kD — Y [(ke; +d;,— 1)/d;] P,,

where for aeR, [a] is the greatest integer less than, or equal to, a.

Theorem 5.7. The genus of X is Y, dimH'(E,0g(DY).

k20

This follows immediately from the 3 preceding lemmas.

Corollary 5.8. Let X be a normal C* surface singularity, with data as in 2.1. Then X is
rational if and only if either
1) there is no central curve, or

ii) the central curve is rational and kb— Y {ke;/d;} > —2, for all k> 0.

By the same method one can compute the genus of X from b, n, and the ¢; and d,
when the central curve is rational.

One should notice the striking resemblence Theorems 5.1 and 5.7 present with
the case of cones.

6. Examples

We compute the equations of certain normal C* surface singularities in order to
illustrate Theorem 5.1. In [11] we computed the equations of all the rational double
points by this method.
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Example 6.1. The central curve is rational and the weighted dual graph is:

.
O j —O
-4 —1 —4

Let D be P,. Then D¥=kP,—{k/4} > P,. Let t be a meromorphic function on E

with values 0, 1, o0 at P, P,, P5. Then it is easy to check, using 5.1, that the ring A4 is
generated by an element x of degree 3 and 2 elements y and z of degree 4. As global
sections of HO(E, ©,(D™) they can be written:

D®=2P,—P,—P,, x=tt—1).
D#®=3P,—P,—P,, y=tlt—1), z=t3(t—1).

The relation between x, y and z of minimal degree occurs in degree 12:
yz(z—y)=x*.

By 5.7 this singularity is strongly elliptic. It is one of the 14 exceptional singularities
of Arnold.

Example 6.2. The central curve is rational, and there are 4 branches with all ;=1
and all d,=2. Let D=3P,. Then D¥=3kP,—{k/2} > P,. Let t take the values

0, 1, a, 0 at Py, ..., P,. Then the graded ring is generated by elements of degree 2
and 3.
D*®=5P,—P,—P,—P,, x,=tt—1)(t—a)
x,=t*(t—1)(t—a)
x;=t3(t—1)(t—a).
D®=7P,—2P,—2P,—2P,, y,=t}(t—1)*(t—a)?
y,=(t—1)2(t—a)*.
It is easy to check that the relations between the x and the y are generated by the
2 x 2 minors of the matrix
X1 X2 Yy
X2 X3 Y2
Vi Y2 (x3—x5)(x,—ax,)
This could also have been computed directly from the equation of the cone

X(C', &’), which in this case is a cone over an elliptic curve of degree 2, or also by the
results of Wabhl (since this singularity is rational).

Example 6.3. The central curve is elliptic of self-intersection — 1, and there is one
branch with e=2, d=3. The point of intersection of the branch with E is P. &
=0Og(R) for a point Re E. Thus D*® =kR — {2k/3} P. We will distinguish 3 cases (in
what follows,=means “linearly equivalent”).
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i) R=P. Then A is generated by 3 elements x,y,z of degree 1, 6 and 9
respectively. The equation between them is

22=4y +g,yx®+g,x'8,

where g, and g5 are constants depending on the modulus of the elliptic curve. The
genus of the singularity can be computed by 5.7: it is 3.

il) R=%P,but 2R=2P. Then A4 is again generated by 3 elements x, y, and z, but
this time of degree 2, 3, and 7. A typical singularity satisfying these conditions is z2
=x(y*+x°). The genus is 2.

iii) 2R=+2P. Then it is easy to check that X is not a hypersurface, and that the
genus is 1.

Parts i) and ii) of this example were pointed out by Laufer in a lecture.
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