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Introduction

The moment sequences of Hausdorff and the completely monotone functions
on the half-line are closely related concepts and in the theory of capacities of
Choquet [2] we find a unified treatment in a study of functions on a semigroup
which are monotone of infinite order.

Recently Ressel [5] proved that completely monotone functions on the
half-line are characterized among the bounded continuous functions f:[0, co[—->R
by the following positive definiteness property:

For every finite set of numbers s, ..., 5,20 the matrix (f(s;+5)); j=1,.. 18
positive semi-definite.

This notion makes perfectly sense on any abelian (topological) semigroup,
and it is the purpose of the paper to examine this and related notions.

It turns out that for discrete abelian semigroups S the positive definite bounded
functions f, normalized such that f(0)=1, form a Choquet simplex and the
extreme points are exactly the real characters on S, i.e. the multiplicative functions
0:S—[—1,1] such that g(0)=1. This implies that the cone of positive definite
and bounded functions contains the cone of monotone functions of order infinity,
and the two classes coincide in the case of a 2— divisible semigroup S i.e. a semi-
group where every element is of the form 2a for some aeS.

In analogy with the group case we also study negative definite functions,
which by definition are non-negative functions f on S for which (f(s)+ f(s;)—
S(s;45))i j=1,...n is positive semi-definite for every finite set of elements
515 .+ SRES.

These functions can be characterized by a “Schoenberg-theorem” and an
integral representation analogous to the Lévy-Khinchin formula.

The functions which are alternating of order infinity form a subcone of the
cone of negative definite functions and again the two classes coincide in the
2-divisible case. .

For a discrete abelian semigroup S the set of characters S forms a compact
semigroup in the topology of pointwise convergence and it looks temptating to
try to make a duality theory and consider topological semigroups. In analogy
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with the group case one could hope that an integral representation of continuous
positive definite functions on for example a compact semigroup S could be found
by considering S, where S, is S with the discrete topology, and then proving
that the representing measure was supported by the continuous characters.
This is not true however and several examples show that there is little hope to
make a good theory for topological semigroups.

For the classical semigroup [0, co[ with addition there is however only one
non-continuous character and there the discrete representation theorems obtained
imply the classical representation theorems for completely monotone functions
and for Bernstein functions.

Long ago Hilbert proved that in dimensions n>3 there exist real polynomials
P such that P(x)=0 for all xelR" but which cannot be written as a finite sum of
squares of polynomials. By means of the integral representation for positive
definite functions on the semigroup INj, we prove that there always exists a sequence
of polynomials P,, k=1,2,... approximating P in the norm ) |c,, sum of the
absolute values of the coefficients, and such that each P, is a sum of squares of
polynomials.
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Chapter 1. Positive and Negative Definite Functions on Abelian Semigroups
§ 1. The Associated Banachalgebra I'(S)

1.1. In all of this chapter S denotes an arbitrary abelian semigroup, ie. S is a
set equipped with a composition rule called addition and denoted +, such that
the commutative and the associative law hold. We further assume the existence
of a neutral element denoted 0.

1.2. To every abelian semigroup S we associate a commutative real Banach
algebra with unit I'(S). The elements of [!(S) are the functions f:S—IR for which

1= Zslf(a)|<oo,

and ||-| is the norm in question. The multiplication in [*(S) is the “convolution”
(f*x)@= Y f(s)0).
(s,1)eS2

stt=a
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For aeS we denote by ¢, the element in I'(S) given by &,(s)=0 for s+a and ¢ (a)=1.
1.3. Definition. A character on S is a function ¢:S—[ —1, 1] satisfying

(i) o(0)=1.

(i) o(s+t)=o(s)e(t) for all s,teS.

The set of all characters on § is denoted S, which is an abelian semigroup
under pointwise multiplication, and the neutral element is the character s—1.

-

We shall equip S with the topology of pointwise convergence, which turns S
into a compact Hausdorff space.
The following result is easily established:

1.4. Propeosition. For every 0€S the mapping d,:1'(S)>R given by
3= f(s)ls)

seS
is a character on the commutative Banachalgebra 1'(S) and the mapping @—9,
is a homeomorphism of the compact space S onto the compact spectrum of 1'(S).

From now on we identify S with the spectrum of / !(S) and the Gelfand transform
of fel*(S) is the function f e ((S, R) defined by

f@=7Y f(s)als) for geS.

seS

By the Stone-Weierstrass theorem we get the following

1.5. Corollary. The set of Gelfand transforms { fIfel(S)} is a dense subalgebra
of CS,R).

For a real Radon measure ;2 on S we introduce the transform [ of u as the
function fi: S—»R given by

fi(s)= | o(s)du(g) for seS.
S

1.6. Corollary. The mapping p— fi is one-to-one.
Proof. This follows from Corollary 1.5. together with the formula

Y. fs)= | f(e)du(o)- O
S

seS

§ 2. Positive Definite Functions
Inspired by the paper [5] of Ressel we make the following definition.

2.1. Definition. Let S be an abelian semigroup. A real-valued function f:S—R
is called positive definite if f is bounded and has the following property:

For every ne N and for every n-tuple (sy, ..., s,) of elements from S the n x n-
matrix

(f(si+8)ij=1....n

is positive semi-definite.



256 C. Berg et al.

The set of positive definite functions on S is a convex cone Z=2(S) in the
vector space Z(S) of all real-valued functions on S. The cone £ is closed in the
topology of pointwise convergence.

2.2. Proposition. Every f' € 2 has the following properties:
(i) f(2s)=0 for seS, in particular f(0)=0
(i) (fs+0)*=f(29)f(2t) for s,teS
(iii) [f(N=S(0) for seS.

Proof. (i) and (ii) follow immediately from the definition. As a special case of (ii)
we get (f(s)?< f(25)(0) for seS, so f(0)=0 implies that f is identically zero.
In the proof of (iii) we can therefore assume that f(0)=1 and hence we have

(f(5)*<L f(2s) forall seS.
By iterated application of this inequality we get
(f(s)*"< f(2"s) for neN and seS,
and since f is assumed to be bounded we conclude that | f(s)| <1 for all seS. [

We now define
P={feZ|f(0)=1}.

By Proposition 2.2 (iii) it is clear that £, is a compact convex subset of % in the
topology of pointwise convergence, and 2, is a base for the cone #. The set
of characters S is easily seen to be a closed subset of Z,.

The main result is the following:

2.3. Theorem. The set #, is a Choquet simplex and the set of extreme points of
P, is S.

In the proof we need the following Lemma.

2.4. Lemma. Let fe? and aeS be given. Then the functions f,, f,€Z defined by
[i)=F®)+ f(s+a) and f(s)=f(s)—f(s+a)
both belong to 2.

Proof. Let s, ...,s,eS and ¢y, ..., c,eR be given and consider the function F:S—>R
defined by

F(s)= i S(s+s;+s))cic;.

i,j=1

We claim that Fe. In fact, it is certainly bounded, and for ¢,,...,t,,€S and
dy,...,d,€R we have

Y F,+t)dd,= 5 Y flt,+t,+s+s)ccid,d,

p,q=1 p,g=1i,j=1

which is non-negative by the definition applied to the finite set of elements of
S:t,+s, p=1,...,m; i=1,...,n and the corresponding set of numbers: d,c;
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In particular |F(a)| £ F(0) for a€S, i.e.
Y (f(si+s)t fla+s;+s)cic;20 for aeS. O
i,j=1

Proof of Theorem 2.3. Let fe%, be an extreme element of &, and let aeS be
arbitrary. By Lemma 24 it follows immediately that there exists a constant
A= Aa)=0 such that

f)+f(s+a)=if(s) for seS.
and hence

A=1+f(a)
so that

f(s+a)=f(a)f(s) for seS§

which shows that /€S . )
Conversely we shall now prove that every geS is an extreme point of Z;.
To geS and aeS we define a function e,: 2, >R by

ef)=f2a)-2f(a)e(a)+(e(@)* for fe?, .

Then e, is continuous and affine, e (¢)=0 and
ed@)=(@(@)—e@)’20 forevery ¢e§,

and since ext(2,)CS5, it follows that e,>0 on ext(2,), hence on 2,.
We next define a function E: 2, —[0, co0] by

n

E(f )=SUP{ Y e(f)

i=1

nelN a,, ...,a,,eS}.

As the supremum of an upper filtering family of continuous affine functions,
E is lower semicontinuous and concave and it attains therefore its infimum over 2,
in an extreme point g, of #;. Since E=0 and E(¢)=0 we have E(go)=0, hence
e(00)=0 for all aeS. But g4€S, so finally

(0o(@)—0(a)*=0 for all aeS,

which proves that o =g, is extreme.
By the theorem of Krein-Milman follows now that every f'e 2, is the barycenter
of a probability measure x4 on the compact set S, hence

f(s)= [ ols)du(e) for ses.

A Radon measure u on S verifying this equality is by Corollary 1.6 uniquely
determined. The set 2, thus being affinely isomorphic to the simplex of probability
measures on the compact set S, we have proved that £, is a simplex. O

2.5. Corollary. For every f € P there exists one and only one positive Radon measure
won S such that

f6)=[e)ue) for seS.
S
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2.6. Remarks. 1) The vector space of real Radon measures on S is denoted M(S).
By Corollary 1.6. the transformation is a one-to-one mapping of M(S) into F(S)
and is a bijection of M +(S) onto Z(S). It is furthermore easy to verify that is
a homeomorphism from M .(S) with the vague topology onto Z(S) with the
topology of pointwise convergence.

The semigroup structure on S induces a convolution * on M(S)

(uxv, 9> = [ gle@)du®@vio, ¢) for ge G, R),
S2
and we clearly have (u*v) = ab. The cone 2(S) is stable under pointwise multi-
plication.
2) Let ¢:S—R be a bounded function and L‘p:I’(S)—»]R the associated linear
form

L(f)= Zs JF($)ep(s) .

Then it is easy to see that ¢ is positive definite if and only if L (f*f)=0 for all
Sel'(S)

3) The proof given above that geS is extreme in 2, is based on lectures by
Heinz Bauer, cf. [0]. Another proof follows easily from the general integral
representation for compact convex sets together with the uniqueness in Corollary
1.6.

4) Suppose that S is an abelian group. Then every geS$ is a group character
(assuming only the values 1 and — 1), and therefore every f €2 is positive definite
in the group sense. Furthermore, putting t= —s in Proposition 2.2 (ii), it follows
that e satisfies f{2s)= f(0) for every se S. Therefore, if S is 2-divisible (i.e.
every seS is of the form 2t for some teS) every f e is a non-negative constant.

The characteristic function 1y, is positive definite in the group sense (cf. [1]),
but 1,5,€2 if and only if 2s=0 for all seS. It follows that the notion of positive
definiteness in the sense of Definition 2.1 coincides with the notion of a real-valued
positive definite function in the group sense precisely for abelian groups where
every element has order two.

§ 3. Negative Definite Functions

In analogy with the group case (cf. Berg, Forst [1]) we introduce a class of functions
on S called negative definite.

3.1. Definition. Let S be an abelian semigroup. A function y:S—[0, co[ is called
negative definite if for every neN and for every n-tuple (sy,...,s,) of elements
from S the n x n-matrix

(W(s)+y(s)—w(s;+5))i j=1,....n

is positive semi-definite.
The set of all negative definite functions is a closed convex cone A" in &
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3.2. Propeosition. For a function y:S— [0, oo[ the following conditions are equivalent :
(i) peA".
(i) e""YeP forevery t>0.
(iii) For every n=2, every n-tuple (sy, ..., s,) of elements from S and every n-tuple

n
(¢y, ..., ¢,) of real numbers such that Y c¢;=0 we have
i=1

Z Y(s;+s)cic;<0.
i,j=1
Proof. ()=>(ii). It is enough to prove that e”%eZ if pe.#. Let sy, ...,s,€S and
¢y, ..., c,€R be given. Since the matrix (y(s;)+y(s;) —w(s;+s;) is positive semi-
definite, so is the matrix (exp(y(s;)+y(s;) —y(s; +s5;))), and therefore

Z exp(_W(3i+sj))Cicj= Z exp(W(Si)+1P(5j)_1p(5i+5j))didj_2.0
i,j=1 i,j=1

where d; =exp(— y(s;))c;.
(i1)=>(iii). With s; and c; as in (iii) we have

n

Z %(1—CXP(_tW(Si‘*'Sj)))CiCj:_% ‘"/:, exp(—ty(s;+s;)=<0

ij=1 Lj=1

and letting t—0 we get
Y. wlsi+s;)ec;<0.
i,j=1

(ii))=(i). Let sy, ...,s,€S and c,, ..., c,€R be given, and consider the (n+ 1)-

tuples (0,s,,...,s,) and (c,cy, ..., ¢,), where c=— Y ¢, By (iij) we then have
i=1

CZW(0)+2 Z Y(seic+ Z w(s; + Sj)cicj§0 s
i=1 i,j=1
and consequently

S () +pls) —wlsi+ e, 2 RO Z0. 0
JJj=1

3

3.3. Proposition.

a) For ype A" wehave y(s)Zy(0) forall seS.
b) For we A wehave w—y(0)eN .
c) For pe? wehave @0)—q@pe .

Proof. a) Let we A" and consider the elements 0, seS and the pair of numbers
(1, —1). By Proposition 3.2 (iii) we then get

W(s)= 3 ((0)+1y(2s)).



260 C. Berg et al.
Applying this inequality to 2se S we get

1
y(s)= (% - 2—2) w(0)+ z—lzw(ZZS),

and by iteration

11 1 .
w(s)= (§+ 52 +...+ i)w(0)+ E,—,lp(Z s)

1 1 1
>[4+ = —
2 (2 + 72 +...+ 2,‘)I,U(O).
For n— oo we get y(s) = y(0).

The properties b) and c) follow immediately from Proposition 3.2. O

3.4.Corollary. Every negative definite function vy is the pointwise limit of negative
definite functions of the form c— @, where e 2 and c = @(0).

Proof.
$(5)= lim (1 —exp(~ tp(s). 0

t—0
The following property of negative definite functions is crucial in the proof
of the “Lévy-Khinchin”-representation we will obtain in Theorem 3.7 below.

3.5. Proposition. Every we A" satisfies the inequalities
W) — OIS ws+)Sp(s)+y(t) for s, teS.

Proof. The set of functions we.4" verifying the above inequalities is a closed
convex cone C containing the non-negative constants. In order to prove C=.A4"
is suffices by Corollary 3.4 to prove that 1— feC for fe#,, and by Theorem 2.3
it even suffices to show that 1—ge C for geS, but in this case the inequalities are
straightforward. O

3.6. Proposition. For ywe A" and aeS§ the function A p(s)=y(s+a)—y(s) is positive
definite.

Proof. By Proposition 3.5 follows that |4,y(s)| < w(a) for all s€ S, so 4, is bounded.

By Corollary 3.4 it suffices to prove the positive definiteness of 4,y for pe A"
of the form p=c—¢, where c=¢(0) and pe, but this amounts to proving
s—@(s)—@(a+s) is positive definite, which is known from Lemma 2.4. O

We now enumerate the three types of negative definite functions which will
occur in the “Lévy-Khinchin” formula (Theorem 3.7 below):

1) The non-negative constant functions.

2) Functions h:S—[0, oo[ satisfying h(s +t)= h(s)+ h(t) for all s, teS.

3) Functions of the form y(s)= j' (1 —o(s))du(e) where u is a non-negative

S\t
Radon measure on 5’\{1} for which t(hé integral on the right-hand side is finite
for every seS.
It is easy to verify that functions of these types, and consequently sums of
such functions, are negative definite.
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3.7. Theorem. Let e A". Then there exist
1) a non-negative constant c,
2) a function h:S— [0, oo[ satisfying h(s+t)=h(s)+ h(t) for s, teS,
3) a non-negative Radon measure p on S\{1} with the property that

| (1—ols)du(@)< oo forall seS,
$\i1)

such that

(*) w(s)=c+h(s)+ _\j (1—o(s))dule) for seS.
S\{1}

The triple (c, h, p) is uniquely determined by y and given in the following way:
c=y(0)
h(s)= lim w_(:sl for seS

n— oo

du(e)=(1—o(a))~'do (0) onthe openset {geSlo(a)<1},
where o, is the finite positive measure on 5 satisfying 6 ,= A p.
The measure p in the above representation is called the Lévy measure for y.

Proof. The uniqueness of the representation: Suppose 1 has a representation of
the form (). Then clearly ¢=1y(0) and

p(ns)

—S4h+ [ L(-(@e))ue for seS and neN.
h S\

Since
1
0= . (I—=(e))=1-0(s),

the dominated convergence theorem can be applied to the effect that

h(s)= lim M

For aeS we find
Ap=h@+ [ ofs)(1—o(a)du(@)=46 (s)
S\

which shows that ¢,=h(a)e; +(1—g(a))y, hence p=(1—pg(a))” g, on the open
set 0,={oeS|o(a)<1}, and the open sets (0,),s evidently form a covering of
S\{1}. This proves that u is uniquely determined.

The existence of the representation: Let we. /. We will define the measure u
by the formula

p=(1-g@) ‘e, on 0,
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so we need the following compatibility assertion:
(**) (1—g(a) to,=(1—0o() ‘e, in 0,0, for a,beS.
To see this we remark that

w(s+a)+yp(s+b)—yw(s)—yp(s+a+b)
= g o(s) (1 —e(b))do (o) = [ o(s) (1 —e(@)day(e) for seS,
S

hence
(1—o(b))da (0)=(1—¢(a))da ()

by Corollary 1.6, and (xx) follows.
It is easy to see that the measure u defined above satisfies

(1 —o(a))du(o)=do (0)lS\{1} forall aeS

and since o, is a finite measure for every aeS, p has the required integrability
property. We can therefore define the function

hs)=p(s)—p(O)— [ (1—g(s)du(e) for seS
S\{1}

which is non-negative, since

| (—o9)du(e) <0 (8)=(s)— (0).
S\{1}

For ae S we find
A,h(s)=A0(s)— [ o(s) (1 —ola))du(o)
=[0,—(1—e@)u] (s)=0,{1}),

because g,—(1—p(a))u is concentrated in the point 1. The function 4, being
constant we have in particular

Ah(s)=A4,h0) for seS§,
hence
h(a+ s)= h(s) + h(a) — h(0)
but h(0)=0. ‘ O

From the proof of existence in Theorem 3.7 we can extract the following
result, which will be useful later.

3.8. Proposition. Let y:S—[0, o[ be a function with the property that A,y is
positive definite for every aeS. Then y has a representation of the form () and in
particular v is negative definite.

3.9. Remark. In analogy with the theory of convolution semigroups on groups,
cf. Berg, Forst [1], the following results are not difficult to obtain:
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By a convolution semigroup on S we mean a family (y,),», of positive measures
on S satisfying

1) uS)<1 for t>0.

2) perpg=pyy for t,s>0

3) u,—e, vaguely for t—0.

There is a bijection (y,),» o>y between the set of convolution semigroups on S
and the set A" established by

fla)=e " for t>0, aeS.

The Lévy measure u for pe(u,), o is equal to

N SRS
p=lim—(u|S\{1}),

t—0 t
where the limit is in the vague topology for the measures on the locally compact
space S\{1}.

3.10. Proposition. Suppose pe A" is a bounded function. Then the representation
(%) takes the form

ws)=wO0)+ [ (1—e()du(o),
S\
and the Lévy measure p is finite. In particular v has the form ¢—q@ where pe?
and c¢= ¢(0).
Proof. Since y is bounded we clearly have

h(s)= limE)—(:—s) —0 forall seS
and there exists a constant a such that
[(1—o(s))du(@)<a forall seS.

For fell(S)with ) f(s)=1 we get

seS

(xxx) Y f(5) [ (1—o(s)dul@)= [ (1—f(@))du(o) <.

seS

Let K be an arbitrary compact subset of S\{1}. For geK there exists seS
such that g(s) <1 and therefore £, <1 in an open neighbourhood U, of ¢ in S\{1}.
By a compactness argument there exist finitely many points s, ..., s,€S such that

_1

M=

f

&

S

S

i=1

satisfies | f] <1 and f <1 in a neighbourhood of K. All the functions g= f*@?+1),
peN, satisfy gel* (S) and Y. g(s)=1, and (x*x) therefore gives

seS

| (=(f@)*** V)du(@)<« forall peN.
S\{1}
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By the Fatou lemma we then get
WK)S [ liminf(1—(f(@)**"")du(@)<a,

S\{1} p~w

and hence p(S\{1})<a, which proves that x is finite. O

§ 4. Relation to Monotone and Alternating Functions of Infinite Order

For a function f:S—IR and an element a, €S we define a function V, f(-;a,):S—R
by
Vif(s;a))=f(s)—f(s+a,) for seS.

For given elements ay, ..., a,e S we define inductively functions
V,f(-;a4,...,a,):8>R, where p=2, ., n:
Vof(s;ay,...a,)=V,_f(s;ay,...,a,_)=V,_ 1 f(s+a,;a,....a,_1), S€S.

A function f:S—[0, co[ is called monotone (resp. alternating) of infinite order
(cf. Choquet [2]) if and only if

V.f(s;ay,...,a,)=0[resp. V, f(s;ay,...,a,)=0]

forallnelNandalla,, ..., a,eS. The set of all monotone (resp. alternating) functions
of infinite order is denoted by .# (resp. /). It is clear that .# and .« are convex
cones.

4.1. Lemma. A function y:S—[0, co[ belongs to </ if and only if for every aeS
the function A, p(s)=y(s+ a)—y(s) belongs to M.

Proof. For a, s, a,, ...,a,eS we have the identity

Vn(Aalp) (Ss Ay .eos an)= - Vn+ IW(S; al’ i} am a)
from which both directions can be derived easily. O

We recall the definition that a subcone E of a convex cone C is extreme iff
f€eE, f=fi+/15 fi€C, f,eCimplies f,, f,€E.

4.2. Theorem.a) .# is an extreme subcone of 2. b) o is an extreme subcone of N
c) If S is 2-divisible (i.e. every element seS is of the form 2t for some teS) then
M=P and A =N

Proof. a) It is easy to see that .#,={fe.#|f(0)=1} is a compact convex base
for the convex cone .#, considered as a subset of & in the topology of pointwise
convergence. From Choquet [2] §46 it is known that the extreme points of .#,
are precisely the non-negative characters on S, hence .# <% by Theorem 2.3.
The unicity of the integral representation implies that .# is extreme in 2.

b) The above Lemma 4.1 together with Proposition 3.8 show that o/ C.A".
Suppose f = f, +f, where f, f,e4" and fe.«/. Then for any aeS we have

Aaszafl +Aaf2€'/”,
hence 4,f,, 4,f,€4#, and again the above lemma gives f,,f,€ <.
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c) Every character is automatically non-negative if S is 2-divisible, so .#;
and 2, have the same extreme points and consequently .# = 2.

It is easy to verify that non-negative constants, non-negative additive functions
and functions of the type 1—g, where ¢ is a non-negative character on S, all
belong to /. By Theorem 3.7 we may now conclude that 4" C.«7 in the 2-divisible
case, hence A = of. |

4.3. Remarks. 1) If S is not 2-divisible, it may happen that .# +2. An example
is given by S=N,={0, 1,2, ...} with addition. Here n—(— 1)" belongs to S\.#.
Even 2, is different from .# as the following function shows: n— ¥ + 3(—1)".

2) It might happen that .# =2 without S being 2-divisible. Let S= {0, a, b}
be the commutative semigroup with neutral element 0 and where a+a=a+b=
b+b=a. Then S is not 2-divisible, but every character is easily seen to be non-
negative so that .# =2.

3) If S is an abelian group, every character assumes only the values 1 and —1
and therefore .# is the non-negative constants. If S is not 2-divisible then .# + 2.

In fact, if S is not 2-divisible the abelian group G=S/S,, where S, = {2s|seS},
contains at least two elements, and all elements ge G satisfy 2g=0. These two
properties imply that there exists a homomorphism ¢@:G—{—1,1} onto the
multiplicative group {— 1, 1}. (Apply Zorn’s lemma, if G is infinite.)

An alternating function of infinite order is negative definite by Theorem 4.2
and hence has the unique representation given in Theorem 3.7. It is natural to
guess that the measure should be concentrated on (S\{1}), in this case. This is
in fact true:

4.4. Theorem. Let e A" have the representation

W(s)=c+h(s)+ 4\5 (1—o(s))du(e)
S\{1)

given by Theorem 3.7. Then ype.of if and only if the measure p is concentrated on
(S\{1}),.

Proof. Let T=(S\{1)\S\{1}),. We know already that u(T)=0 implies pe .o/
(cf. the proof of Theorem 4.2). Let us now assume that ype o/. Since .o/ is an extreme
subcone of 4" we conclude that ¢ (s)= j (1 —o(s))du(p) belongs to o7, too, where

~ Tﬂ
T,={0eS|o(a)<0}. By Lemma 4.1 4,0, is in .#, hence
0=¢,2a)—pa)= | ola)(1—e(a)du(o) .
T,

But the integrand on the right hand side is negative which shows that u(T,)=0.

Using that T, is open for every aeS and that T= () T, we get u(T)=0. O
aeS

Looking to Theorem 4.2 and to Proposition 3.2 we can state, that on a 2-

divisible semigroup a non-negative function y is alternating of infinite order

if and only if e~ is monotone of infinite order for each ¢>0. We shall now apply

the representation of Theorem 4.4 to show that this result is true in general



266 C. Berg et al.

4.5. Theorem. Let y be a non-negative function on S. Then pe.</ if and only if
e e/ for each t>0.

Proof. If e""e# for all t>0 then 1—e "e.o/ and so p= limt~ (1 —e "V)e.o/.
t—0

Now assume  to be in <. Then y has the representation given in Theorem 4.4.

It is enough to show that e~ ¥ lies in .#. Observing that .# is closed under pointwise

multiplication (this follows from the integral representation for functions in .#)

we are left with the problem to prove that

s»exp[— | (i —o(s)dule)
{1+

belongs to .#, e " being a non-negative character on S. Approximating u by
finite measures and approximating these by measures with finite support the
problem reduces to the following question: does geS, and ae[0, oco[ imply that
e*®e #? This in fact is true, because ape .# and

0

1
= Y o (cxo(s))" . O

n=0

The cone .# is with respect to pointwise multiplication a subsemigroup
of .. A natural question is the following: if a finite product of elements of 2,
belongs to .#, do then the factors already belong to .#, too? In this generality it
is not true; take as a counterexample S= INZ (with addition) and the non-negative
positive definite functions f =1 x,)x(0p 9= 1(0;x(2n, Whose product is the non-
negative character 1, o). A partial answer to the problem is given by

4.6. Proposition.a) Let f and g be strictly positive elements in &, i.e. assume that
f(s)>0 and g(s)>0 for all s€S. Then fge # implies fe.# and ge /.

b) Let feP, have the property that for some integer k=1 f* belongs to M,
then fe /.

Proof. a) We shdll show that fe.#. Let f(s)= j'g(s)du(g) be the integral repre-
S

sentation of f. Then f (s)g(s)=_jg(s)g(s)du(g) and we may claim, .# being an
extreme subcone of £, that

s— TI o(s)g(s)du(o)

belongs to .#, too, where again T,={peS|o(a)<0}, aeS. Therefore this function
is non-negative, hence

0=g(a) TI o(a)du(e)

which is only possible if u(T,)=0. This shows that u is concentrated on S, and
that consequently fe.#.

b) Let f(s)= jg(s)d,u(g) be the integral representation of f. Suppose that
fe?, and f*e.# for some k=1. If f(a)=0, then necessarily also f(a+s)=0
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for all seS§, in particular f(2a)=0. But f(2a)= [ (o(a))*du(g), so we get that
u({oeSlo(a)+0})=0 and hence u(T,)=0. If f(a)>0 then we use in analogy with
a) that

s— Tf o(s) (f ()™ "dulo)

belongs to .4, and this gives us as before that 4(T,)=0. Hence f e .. O

§ 5. Infinitely Divisible Positive Definite Functions

5.1. Definition. A function fe2, is called infinitely divisible if and only if for
each neN there exists f,e#; such that f=(f,)", ie. f(s)=(f(s)" for all seS.
We denote the set of all infinitely divisible f in 2, by Z'.

Our aim is to identify the logarithms of the infinitely divisible functions
in 2,. The functions in #* are non-negative, but they may assume the value 0.
This is the reason that we introduce .4, to be the closure of {pe.A"|p(0)=0}
in [0, c0]5.

5.2. Theorem. Let f be a non-negative function in 2, and put ¢ = —logf. Then
the following conditions are equivalent :

(i) feZ
(i) peN,.
(ili) e e, forall t>0.

Proof. (i)=>(ii). The k’th root of f is unique, if k is an odd integer >0 so for those k

1
we have exp(— % (p)eg‘,. This implies (cf. Proposition 3.3) 1 —exp(— % (p) eN
1
so that ¢ = lim k(l —exp(— E(p))&ﬂw.
k—

kodd
(i))=>(iii). Let (¢,) be a net in 4" converging to ¢. Then for any t>0 we get
e 'P*»e”? 50 that e”"?e 2, by Proposition 3.2.

(iii)=>(i) Taket=1,1,1, ... O

5.3. Remarks. 1) The above proof shows that .4 is in fact the monotone sequential
closure of {pe.A#|p(0)=0}. It even shows that any feZ is the decreasing limit
of a sequence f,e 2 with ¢, =inf{f,(s)|se S}>0and {se S|f,(s)=c,} = {s€ S| f(s)=0}
for all ne N.

2) If feZ then the uniquely determined non-negative roots are all positive
definite; they also belong to 2.

3) Replacing 2, by #,, ?' by 4" and N, by o4, (M and o/, defined in an
obvious manner) the three conditions of Theorem 5.2 remain equivalent. In fact
we have by Proposition 4.6 that #'n.#, =.#' which of course means that if an
infinitely divisible positive definite function is monotone of infinite order, then
all (positive) roots of this function are monotone of order infinity again.
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Theorem 5.2 states that 47, is precisely the class of minus logarithms of
infinitely divisible positive definite functions. We should like to have an integral
representation for this class but for the time being we know it only for functions
in A" (Theorem 3.7) corresponding to the strictly positive elements in 2. A natural
way to get out of this problem is to determine for a given feZ the set {f >0}
where fis strictly positive. As it turns out that this subset always is a subsemigroup
of S (containing the neutral element), we have in a certain sense solved our problem.
But new questions arise: What are the subsemigroups of the special form {f >0}
for some fe€2'? The example IN,C [0, oo[ shows that there exist subsemigroups
not belonging to this class. A further interesting question then is the following:
Given a subsemigroup TESS of the above mentioned type, characterise those
strictly positive elements f € 2(T), for which their “zero-extension” f, defined by
fIT= f and f|T°=0, belongs to #(S). We are far from giving completely satis-
factory answers to these questions but nevertheless some positive results are
available. We begin by stating some inequalities.

5.4. Lemma.If f €%, then for all s, teS we have

a) fs+0)=)/ f(2s)f(20).

b) f(s+20)< f(20).

o) f(f ()= f(s+1).

d) fs+0f(O)= f(s).
Proof. a) is a restatement of Proposition 2.2 (ii). b) follows from Proposition 2.2
(iii), s— f(s+2t) being positive definite. c) and d) are easily derived from Prop-
osition 3.5, taking into account that —log f e A4, by Theorem 5.2. O
5.5.Proposition. Let 7 = {{f >0}|f €Z'}. Then we have

a) TeJ if and only if T is a subsemigroup of S containing the neutral element,
such that 1 is positive definite on S.

b) For every TeJ it is true that T+ TLC T and 2se T¢ implies s+SC TC.
) If S is 2-divisible, then even T°+SC T for all Te 7.

Proof. a) If T={f >0}, fe#, then clearly Oc T. Tis a subsemigroup by inequality
c) of Lemma 54 and 1= lim {/7 is positive definite. The other direction is
trivial. n=w
b) is an obvious consequence of the inequalities a) and d) in Lemma 5.4.
c) follows from inequality b) in the above Lemma. O

5.6. Corollary. If S is 2-divisible, then for any TeJ and any feP(T) the zero-
extension f of f belongs to 2(S).

Proof. Let s, ...,s,€S and ¢y, ..., c,eR be given. Applying part c) of the previous
proposition we get

Y f~(s,-+sj)c,-cj= Y flsi+s)eic;20. |
i,j=1 {i|s.eT)?

It is not difficult to see, that the above corollary fails to be true on general semi-
groups. As an example let us consider the semigroup N,={0,1,2,...} under
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addition. It is easy to show that the characters are precisely the functions n—x"
for xe[ —1, 1] and that S is homeomorphic to [ — 1, 1].

5.7. Proposition. a) 7 (N,)={N,, 2N, {0} }.

b) The zero-extension of f :2IN,— R is positive definite if and only if f is monotone
of infinite order on 2IN,.

Proof. a) Assume that Te 7 (IN;) and that T is neither {0} nor IN,. Then of course
1¢Tand (2Ny)N T =40, because otherwise there would exist ke N, with k+ N, C T¢
[by Proposition 5.5 (b)] which would imply that T is finite. Hence 2N, < T and
from T+ T<C T we conclude T =2NN,, .
b) Suppose that the zero-extension of f is positive definite. Call it f and
1

let f (n)= j x"du(x) be its desintegration. Then
=~

f@n)=f@n= }1 x*"dp(x)= :j)y"dv(y),
where v is the image measure of u under x—x2. Hence f e .#(2N,).

Conversely assume that f(2n)= }x"dv(x). Let ny, ....,meN, and cy, ..., ,eR
be given. Put N, = {ijn;e2IN,} and 1\(;2= {iln;e2INy+1}. Then

. i:x f~(n,~+nj)c,-cj= NZf(n,v+nj)c,~cj+ %f(ni—knj)cicj.

i, 1

The first sum on the right hand side is of course non-negative, and for the second
we get

1
2 fm+n)cc;= 2 [ xme+ 2 dy(x)e;c;
NZ Nz 0

. §( ¥ o) 20.

ieNy
Hence fe 2(N,). O
Without proof we mention, that 7 (IN3) consists of the following ten semigroups:
N3, (NgxN,, Nox(2Ny), Nyx{0}, {0}xN,, (2No)x {0},
{0} x(2Ng), {(ny,ny)ny+n,€2Ny}, (2Ng)x(2N,) and {0}.

Chapter II. Examples and Applications
§ 6. The Classical Laplace Transform

Let S be the additive semigroup IR%, ={xeRP”|x;>0Vi=1, ..., p}, where p is some
positive integer. It is an elementary fact that the characters on this semigroup
are given by exponentials; more precisely: the mapping

[0, 0]P>IR2

t—(s—e ")
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is a topological semigroup isomorphism. (We use the convention that 0-c0=0
and c-00 =00 for ¢>0.) Corollary 2.5 now implies that

M ([0, 0]")—>P(R%)

,H(SA | e'“")dy(t))
[0, 0]P
is a bijective map from the space of non-negative Radon measures on [0, c0]?
onto the cone of positive definite functions on IR .
This map is the classical Laplace Transformation. It is immediate that if p
is concentrated on R4, then its Laplace transform £ is continuous. If on the other
hand i is supposed to be continuous, then for any j=1,...,p we get

O, ... 0.5, 0, ... 0)=Lig(s)mfw) ({0 )+ [ e dmfu) (),

where 7;:[0, 0]7—[0, o] is the projection on the j’s coordinate, from which
we may conclude that 7mfu)({cc})=0, hence u([0, c0]?\IR%)=0. Thus we get

6.1. Theorem. (cf. [5], Satz 1). A real valued function on IR, is the Laplace transform
of a finite non-negative measure on RE if and only if it is continuous and positive

definite.

If p:R% —[0, oo is a negative definite function, then Theorem 3.7 gives us
the unique representation

pE)=p0)+hs)+ [  (1—e “¥)do(t) forall seR”
[0, 17\ (0}

where h is additive and ¢ is a non-negative Radon measure on [0, c0]”\{0}.
Of course we can find a vector t,eR% such that h(s)=<t,, sy for all s, and then
it is again not difficult to see that y is continuous if and only if ¢ is concentrated
on R%\{0}. Combining this with Theorem 5.2 we get, cf. [4] (Hirsch)

6.2. Theorem. Let p be a probability measure on RE, let f be its Laplace transform
and put = —log f. Then the following properties are equivalent :

(i) u is infinitely divisible (in the ordinary sense).

(i) f is a continuous infinitely divisible positive definite function.
(iii) v is a continuous negative definite function.
(iv) e™ ¥ is continuous and positive definite for all t > 0.

(v) There exist t,elR% and a non-negative Radon measure ¢ on RE\{0}
such that

pis)=<{te,s)+ [ (1—e )do(t) forall seR? .

RE\ {0}

6.3. Remark. A famous theorem of 1.J. Schoenberg states the following (cf. [7]):
A continuous function f:IR, —»C has the property that fo|-|, is positive semi-
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definite (in the group theoretic sense) on IR” for all ne N (|-| denoting the euclidean
norm) if and only if there exists a finite non-negative measure p on IR, such that

f()= [ e"*du(3) forall teR, .
0

We only mention the fact that an application of Theorem 6.1 leads to a very
easy and short proof of this result and refer the reader to [6].

§ 7. The Semigroup ([0,1], A)

Let us consider as a further example the unit interval S=[0, 1] with s+t=sAt=
min {s, t} as semigroup operation. Then S is a compact, metrisable, topological
abelian semigroup with unit element 1. S consists only of idempotents, in particular
it is 2-divisible. It is clear that characters on S can only assume the values 0 and 1,
in fact we have

$= {1, y0La< 1ju{ly, y0<a<t1}.
7.1. Proposition. A function f:S—RR is positive definite if and only if f is non-
decreasing and non-negative.
Proof. If f is positive definite, it has an integral representation f(s)= { o(s)du(o)
s

and is hence non-decreasing, all characters having this property. For the converse

direction we shall give a probabilistic proof. Assume that f:S—[0, co[ is non-

decreasing and let 0<t,<t,<...<t,<1 and ¢, ..., c,eR be given. There exist

a probability space and independent normally distributed random variables

X, X,, ..., X, with mean zero and variances f(t,), f(t;)—f(ty), ..., f(t)—f(t,— 1)
k

Put Y,= ) X;;thenifi<j,
i=1

E(Y,Y)=E(Y?)=f(t)+ f(t)—ft)+...+ ft)—f(t;i- )
=f{t)=f{t;nt)

implying

v

0. d

i f(ti"tj)CiCF'E(i Cil’i)z

1 i=1

7.2. Corollary. a) p:S—[0, oo[ is negative definite if and only if y is non-increasing.
b) Every positive definite function on S is infinitely divisible.

Proof. a) follows from Proposition 3.2 and b) is evident. O

7.3. Remark. If f is positive definite on S, its integral representation can be obtained
in the following way: assume (without loss of generality) that f(1)=1. Put
S,={seS|f(s)=a} for 0<a<1. Then 1€S, and 15 eS. The mapping @:[0, 1]-S§,
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®P(a)=1g, is easily seen to be (Borel to Baire) measurable. Let m be the Lebesgue
measure on [0, 1] and u its image under @. Then

1 1
fs)= (f) Lo, sisn(@dm(a) = [ 15 (s)dm(a)= [ o(s)dp(e)
0 5

for all se S, which shows, that u is the (unique) measure representing f.

§ 8. The Semigroup L35(]0,1])

In the example given above our semigroup was compact, metrisable and moreover
a topological semigroup, which means that the semigroup operation is simulta-
neously continuous. And we can see that if a positive definite function is continuous
in the neutral element, then almost every character in its desintegration has the
same property. This of course holds also for the classical Laplace transform,
cf. §6. We do not know whether this is true in general. The following exampel
shows that if only separate continuity of the semigroup operation is assumed
(i.e. the semigroup is “semitopological”), then the situation may be pathological.

Let S be the unit ball LP([0, 1]) in L™ over the unit interval with Lebesgue
measure m (we only consider real valued functions). With multiplication and the
o(L*™, L")-topology S is a semitopological abelian semigroup with neutral element
1 and moreover compact and metrisable as a topological space. The function
¢@:S—R defined by

olf)= (I) S (x)dm(x)

is a continuous positive definite function on S with ¢(1)=1.

8.1. Theorem. The unique probability measure giving the desintegration of ¢ is
concentrated on a compact subset of S which contains no characters continuous
in the neutral element of S.

Proof. Let 0: L*— ¥ be a multiplicative linear lifting. Let Q denote the Gelfand
spectrum of L®. § induces a mapping 610, 1]—Q defined by 0) (f)=(6( ) (x),
fe L™, which immediately is seen to be measurable from the Lebesgue measurable
sets in [0, 1] to the Baire sets in Q. Thus the image u of m under 6 is a well defined
Radon measure on Q and from

1 1 1
; o(f)dule) = (j, (060) (f )dm(x)= g 0(f)dm = g Jdm=o(f)

we see that u represents ¢. Of course we look at Q as a closed subset of S; by
definition p(Q)=1.
Now let wye@ and assume u({wy})=0. Then we can find compact subsets

: 1 . .
K,CQ—{w,} with uK,)>1-— p n=1,2,.... Choose continuous functions

gn:Q-[0, 1] such that g,|K,=1, but g,(w,)=0. The functions g,-0 belong to S
and for he L' we have

< | |lhldm—0, n-oo
[0, 1]\6~ 4(K,)

1
| h(1 - g,,-B)dm
0
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implying g,,o(j—d in S. But wo(g,,c-é)=g,,(wo)=0 for all neN and therefore w,
is not continuous at the neutral element of S.

The proof will now be finished by showing that u({w})=0 for all weQ. Let
BC[O, 1] be a measurable set. The Gelfand transform of 15 is the indicator function
of a clopen set ACQ. From the relation 1 ,(w)=w(1p) we conclude

WA)=

O'_q’—

0(x)dm(x)= j(() x)) (1g)dm(x)

Q2
1
= [(0(1p)) (x)dm(x)= f 1 zdm=m(B).

0

For a given ¢>0 there exists a partition of [0, 1] into finitely many measurable
sets, each of which has Lebesgue measure <¢ The corresponding clopen scts
of Q are also a partition of ©, and this proves that p is diffuse. O

§ 9. An Approximation Theorem with Relation to a Negative Result by Hilbert

Let p be a polynomial in m variables with real coefficients. p is called positive
definite if it is non-negative for all (real) values of the variables. Of course any
finite sum of squares of polynomials is positive definite and for m=1 and m=2
it can be shown that any positive definite polynomial is of this type. However
for m=3 this is not true (for the proof of these statements see Hilbert [3]).

Although a positive definite polynomial is not always a finite sum of squares
of polynomials, we shall see that it can be approximated by such sums in a reasonable
norm. On the vector space P,, of polynomials in m variables with real coefficients
we define the norm |-|, as the sum of the absolute values of the coefficients. If we
use the multiindex notation for a polynomial in P,, we obtain a natural identification
between P, and the subspace of I'(INg) consisting of functions of finite support.
This identification is an isometry and convolution in ['(IN7) corresponds to
product of polynomials.

9.1. Theorem. Let pe P,, and suppose that p(t)=0 for all te[ — 1, 1]™. Then p can
be approximated in |-|;-norm with finite sums of squares of polynomials in P,

Proof. Let C be the |-|,-closure of such sums. Of course C is a convex cone. Suppose
that p¢ C. By Hahn-Banach’s theorem there exists a |-|;-continuous linear func-
tional @:1'(N7)—- R satisfying

(*) @&(f)=0 forall feC

and

P(p)<0.

The functional @ is induced by a bounded function ¢ on INg. Condition (x) means
in particular that ¢ is positive definite on INj. Our desintegration shows now
@(p)=0 and this contradiction finishes the proof. O
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